Skip to main content
Top
Published in: Radiation Oncology 1/2014

Open Access 01-12-2014 | Research

Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes

Authors: Jason Callahan, Tomas Kron, Shankar Siva, Nathalie Simoens, Amanda Edgar, Sarah Everitt, Michal E Schneider, Rodney J Hicks

Published in: Radiation Oncology | Issue 1/2014

Login to get access

Abstract

Background

PET/CT scans acquired in the radiotherapy treatment position are typically performed without compensating for respiratory motion. The purpose of this study was to investigate geographic miss of lung tumours due to respiratory motion for target volumes defined on a standard 3D-PET/CT.

Methods

29 patients staged for pulmonary malignancy who completed both a 3D-PET/CT and 4D-PET/CT were included. A 3D-Gross Tumour Volume (GTV) was defined on the standard whole body PET/CT scan. Subsequently a 4D-GTV was defined on a 4D-PET/CT MIP. A 5 mm, 10 mm, 15 mm symmetrical and 15×10 mm asymmetrical Planning Target Volume (PTV) was created by expanding the 3D-GTV and 4D-GTV’s. A 3D conformal plan was generated and calculated to cover the 3D-PTV. The 3D plan was transferred to the 4D-PTV and analysed for geographic miss. Three types of miss were measured. Type 1: any part of the 4D-GTV outside the 3D-PTV. Type 2: any part of the 4D-PTV outside the 3D-PTV. Type 3: any part of the 4D-PTV receiving less than 95% of the prescribed dose. The lesion motion was measured to look at the association between lesion motion and geographic miss.

Results

When a standard 15 mm or asymmetrical PTV margin was used there were 1/29 (3%) Type 1 misses. This increased 7/29 (24%) for the 10 mm margin and 23/29 (79%) for a 5 mm margin. All patients for all margins had a Type 2 geographic miss. There was a Type 3 miss in 25 out of 29 cases in the 5, 10, and 15 mm PTV margin groups. The asymmetrical margin had one additional Type 3 miss. Pearson analysis showed a correlation (p < 0.01) between lesion motion and the severity of the different types of geographic miss.

Conclusion

Without any form of motion suppression, the current standard of a 3D- PET/CT and 15 mm PTV margin employed for lung lesions has an increasing risk of significant geographic miss when tumour motion increases. Use of smaller asymmetric margins in the cranio-caudal direction does not comprise tumour coverage. Reducing PTV margins for volumes defined on 3D-PET/CT will greatly increase the chance and severity of a geometric miss due to respiratory motion. 4D-imaging reduces the risk of geographic miss across the population of tumour sizes and magnitude of motion investigated in the study.
Appendix
Available only for authorised users
Literature
1.
go back to reference MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, Danna M, Inoue T, Deniaud-Alexandre E, Schipani S, Watanabe N, Dondi M, Jeremic B: Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009,91(1):85-94. 10.1016/j.radonc.2008.11.008CrossRefPubMed MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, Danna M, Inoue T, Deniaud-Alexandre E, Schipani S, Watanabe N, Dondi M, Jeremic B: Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 2009,91(1):85-94. 10.1016/j.radonc.2008.11.008CrossRefPubMed
2.
go back to reference Greco C, Rosenzweig K, Cascini GL, Tamburrini O: Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007,57(2):125-134. 10.1016/j.lungcan.2007.03.020CrossRefPubMed Greco C, Rosenzweig K, Cascini GL, Tamburrini O: Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 2007,57(2):125-134. 10.1016/j.lungcan.2007.03.020CrossRefPubMed
3.
go back to reference Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL: Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007,67(3):709-719. 10.1016/j.ijrobp.2006.09.046CrossRefPubMed Grills IS, Yan D, Black QC, Wong CY, Martinez AA, Kestin LL: Clinical implications of defining the gross tumor volume with combination of CT and 18FDG-positron emission tomography in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 2007,67(3):709-719. 10.1016/j.ijrobp.2006.09.046CrossRefPubMed
4.
go back to reference Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, Lau E, Pitman A, Ware R, MacManus M: Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010,77(4):1151-1157. 10.1016/j.ijrobp.2009.06.032CrossRefPubMed Bayne M, Hicks RJ, Everitt S, Fimmell N, Ball D, Reynolds J, Lau E, Pitman A, Ware R, MacManus M: Reproducibility of “intelligent” contouring of gross tumor volume in non-small-cell lung cancer on PET/CT images using a standardized visual method. Int J Radiat Oncol Biol Phys 2010,77(4):1151-1157. 10.1016/j.ijrobp.2009.06.032CrossRefPubMed
5.
go back to reference Mac Manus M, Hicks RJ, Everitt S: Role of PET-CT in the optimization of thoracic radiotherapy. J Thorac Oncol 2006,1(1):81-84. 10.1097/01243894-200601000-00017CrossRefPubMed Mac Manus M, Hicks RJ, Everitt S: Role of PET-CT in the optimization of thoracic radiotherapy. J Thorac Oncol 2006,1(1):81-84. 10.1097/01243894-200601000-00017CrossRefPubMed
6.
go back to reference Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K: Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002,53(4):822-834. 10.1016/S0360-3016(02)02803-1CrossRefPubMed Seppenwoolde Y, Shirato H, Kitamura K, Shimizu S, van Herk M, Lebesque JV, Miyasaka K: Precise and real-time measurement of 3D tumor motion in lung due to breathing and heartbeat, measured during radiotherapy. Int J Radiat Oncol Biol Phys 2002,53(4):822-834. 10.1016/S0360-3016(02)02803-1CrossRefPubMed
7.
go back to reference Ross CS, Hussey DH, Pennington EC, Stanford W, Doornbos JF: Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 1990,18(3):671-677. 10.1016/0360-3016(90)90076-VCrossRefPubMed Ross CS, Hussey DH, Pennington EC, Stanford W, Doornbos JF: Analysis of movement of intrathoracic neoplasms using ultrafast computerized tomography. Int J Radiat Oncol Biol Phys 1990,18(3):671-677. 10.1016/0360-3016(90)90076-VCrossRefPubMed
8.
go back to reference Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, Aarons Y, Binns D, Hicks RJ: Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiat Oncol Biol Phys 2013,86(4):749-754. 10.1016/j.ijrobp.2013.02.030CrossRefPubMed Callahan J, Kron T, Schneider-Kolsky M, Dunn L, Thompson M, Siva S, Aarons Y, Binns D, Hicks RJ: Validation of a 4D-PET maximum intensity projection for delineation of an internal target volume. Int J Radiat Oncol Biol Phys 2013,86(4):749-754. 10.1016/j.ijrobp.2013.02.030CrossRefPubMed
9.
go back to reference Hanna GG, van Sornsen De Koste JR, Dahele MR, Carson KJ, Haasbeek CJ, Migchielsen R, Hounsell AR, Senan S: Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography. Clin Oncol (R Coll Radiol) 2012,24(6):e71-e80. 10.1016/j.clon.2012.03.002CrossRef Hanna GG, van Sornsen De Koste JR, Dahele MR, Carson KJ, Haasbeek CJ, Migchielsen R, Hounsell AR, Senan S: Defining target volumes for stereotactic ablative radiotherapy of early-stage lung tumours: a comparison of three-dimensional 18F-fluorodeoxyglucose positron emission tomography and four-dimensional computed tomography. Clin Oncol (R Coll Radiol) 2012,24(6):e71-e80. 10.1016/j.clon.2012.03.002CrossRef
10.
go back to reference Lamb JM, Robinson C, Bradley J, Laforest R, Dehdashti F, White BM, Wuenschel S, Low DA: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections. Med Phys 2011,38(10):5732-5737. 10.1118/1.3633896PubMedCentralCrossRefPubMed Lamb JM, Robinson C, Bradley J, Laforest R, Dehdashti F, White BM, Wuenschel S, Low DA: Generating lung tumor internal target volumes from 4D-PET maximum intensity projections. Med Phys 2011,38(10):5732-5737. 10.1118/1.3633896PubMedCentralCrossRefPubMed
11.
go back to reference Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006,33(10):3874-3900. 10.1118/1.2349696CrossRefPubMed Keall PJ, Mageras GS, Balter JM, Emery RS, Forster KM, Jiang SB, Kapatoes JM, Low DA, Murphy MJ, Murray BR, Ramsey CR, Van Herk MB, Vedam SS, Wong JW, Yorke E: The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 2006,33(10):3874-3900. 10.1118/1.2349696CrossRefPubMed
12.
go back to reference Wang Y, Bao Y, Zhang L, Fan W, He H, Sun ZW, Hu X, Huang SM, Chen M, Deng XW: Assessment of respiration-induced motion and its impact on treatment outcome for lung cancer. Biomed Res Int 2013, 2013: 872739.PubMedCentralPubMed Wang Y, Bao Y, Zhang L, Fan W, He H, Sun ZW, Hu X, Huang SM, Chen M, Deng XW: Assessment of respiration-induced motion and its impact on treatment outcome for lung cancer. Biomed Res Int 2013, 2013: 872739.PubMedCentralPubMed
13.
go back to reference Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, Miller RW, Song Y: Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat 2008,7(1):67-81. 10.1177/153303460800700109CrossRefPubMed Li G, Citrin D, Camphausen K, Mueller B, Burman C, Mychalczak B, Miller RW, Song Y: Advances in 4D medical imaging and 4D radiation therapy. Technol Cancer Res Treat 2008,7(1):67-81. 10.1177/153303460800700109CrossRefPubMed
14.
go back to reference Guerra L, Meregalli S, Zorz A, Niespolo R, De Ponti E, Elisei F, Morzenti S, Brenna S, Crespi A, Gardani G, Messa C: Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur J Nucl Med Mol Imaging 2014,41(4):702-710. 10.1007/s00259-013-2594-5CrossRefPubMed Guerra L, Meregalli S, Zorz A, Niespolo R, De Ponti E, Elisei F, Morzenti S, Brenna S, Crespi A, Gardani G, Messa C: Comparative evaluation of CT-based and respiratory-gated PET/CT-based planning target volume (PTV) in the definition of radiation treatment planning in lung cancer: preliminary results. Eur J Nucl Med Mol Imaging 2014,41(4):702-710. 10.1007/s00259-013-2594-5CrossRefPubMed
15.
go back to reference Yakoumakis N, Winey B, Killoran J, Mayo C, Niedermayr T, Panayiotakis G, Lingos T, Court L: Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets. J Appl Clin Med Phys 2012,13(6):3850.PubMed Yakoumakis N, Winey B, Killoran J, Mayo C, Niedermayr T, Panayiotakis G, Lingos T, Court L: Using four-dimensional computed tomography images to optimize the internal target volume when using volume-modulated arc therapy to treat moving targets. J Appl Clin Med Phys 2012,13(6):3850.PubMed
16.
go back to reference Everitt S, Kron T, Leong T, Schneider-Kolsky M, Mac Manus M: Geographic miss in radiation oncology: have we missed the boat? J Med Imaging Radiat Oncol 2009,53(5):506-509. 10.1111/j.1754-9485.2009.02102.xCrossRefPubMed Everitt S, Kron T, Leong T, Schneider-Kolsky M, Mac Manus M: Geographic miss in radiation oncology: have we missed the boat? J Med Imaging Radiat Oncol 2009,53(5):506-509. 10.1111/j.1754-9485.2009.02102.xCrossRefPubMed
17.
go back to reference Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, Berbeco R: Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 2008,53(13):3661-3679. 10.1088/0031-9155/53/13/018CrossRefPubMed Park SJ, Ionascu D, Killoran J, Mamede M, Gerbaudo VH, Chin L, Berbeco R: Evaluation of the combined effects of target size, respiratory motion and background activity on 3D and 4D PET/CT images. Phys Med Biol 2008,53(13):3661-3679. 10.1088/0031-9155/53/13/018CrossRefPubMed
18.
go back to reference Callahan J, Binns D, Dunn L, Kron T: Motion effects on SUV and lesion volume in 3D and 4D PET scanning. Australas Phys Eng Sci Med 2011,34(4):489-495. 10.1007/s13246-011-0109-xCrossRefPubMed Callahan J, Binns D, Dunn L, Kron T: Motion effects on SUV and lesion volume in 3D and 4D PET scanning. Australas Phys Eng Sci Med 2011,34(4):489-495. 10.1007/s13246-011-0109-xCrossRefPubMed
19.
go back to reference Geets X: 4D PET-CT guided radiation therapy. JBR-BTR 2013,96(3):155-159.PubMed Geets X: 4D PET-CT guided radiation therapy. JBR-BTR 2013,96(3):155-159.PubMed
20.
go back to reference Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, Macapinlac HA, Squire OD, Humm JL: Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002,43(7):876-881.PubMed Nehmeh SA, Erdi YE, Ling CC, Rosenzweig KE, Schoder H, Larson SM, Macapinlac HA, Squire OD, Humm JL: Effect of respiratory gating on quantifying PET images of lung cancer. J Nucl Med 2002,43(7):876-881.PubMed
21.
go back to reference Sura S, Greco C, Gelblum D, Yorke ED, Jackson A, Rosenzweig KE: (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 2008,70(5):1397-1402. 10.1016/j.ijrobp.2007.08.052PubMedCentralCrossRefPubMed Sura S, Greco C, Gelblum D, Yorke ED, Jackson A, Rosenzweig KE: (18)F-fluorodeoxyglucose positron emission tomography-based assessment of local failure patterns in non-small-cell lung cancer treated with definitive radiotherapy. Int J Radiat Oncol Biol Phys 2008,70(5):1397-1402. 10.1016/j.ijrobp.2007.08.052PubMedCentralCrossRefPubMed
22.
go back to reference Li FX, Li JB, Zhang YJ, Liu TH, Tian SY, Xu M, Shang DP, Ma CS: Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer. Radiother Oncol 2011,99(2):176-180. 10.1016/j.radonc.2011.03.015CrossRefPubMed Li FX, Li JB, Zhang YJ, Liu TH, Tian SY, Xu M, Shang DP, Ma CS: Comparison of the planning target volume based on three-dimensional CT and four-dimensional CT images of non-small-cell lung cancer. Radiother Oncol 2011,99(2):176-180. 10.1016/j.radonc.2011.03.015CrossRefPubMed
23.
go back to reference Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K: 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother Oncol 2009,93(3):419-423. 10.1016/j.radonc.2009.08.040CrossRefPubMed Hof H, Rhein B, Haering P, Kopp-Schneider A, Debus J, Herfarth K: 4D-CT-based target volume definition in stereotactic radiotherapy of lung tumours: comparison with a conventional technique using individual margins. Radiother Oncol 2009,93(3):419-423. 10.1016/j.radonc.2009.08.040CrossRefPubMed
24.
go back to reference Peters LJ, O’Sullivan B, Giralt J, Fitzgerald TJ, Trotti A, Bernier J, Bourhis J, Yuen K, Fisher R, Rischin D: Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol 2010,28(18):2996-3001. 10.1200/JCO.2009.27.4498CrossRefPubMed Peters LJ, O’Sullivan B, Giralt J, Fitzgerald TJ, Trotti A, Bernier J, Bourhis J, Yuen K, Fisher R, Rischin D: Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol 2010,28(18):2996-3001. 10.1200/JCO.2009.27.4498CrossRefPubMed
Metadata
Title
Geographic miss of lung tumours due to respiratory motion: a comparison of 3D vs 4D PET/CT defined target volumes
Authors
Jason Callahan
Tomas Kron
Shankar Siva
Nathalie Simoens
Amanda Edgar
Sarah Everitt
Michal E Schneider
Rodney J Hicks
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Radiation Oncology / Issue 1/2014
Electronic ISSN: 1748-717X
DOI
https://doi.org/10.1186/s13014-014-0291-6

Other articles of this Issue 1/2014

Radiation Oncology 1/2014 Go to the issue