Skip to main content
Top
Published in: Tumor Biology 5/2014

01-05-2014 | Research Article

Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer

Authors: Rosário Pinto-Leite, Isabel Carreira, Joana Melo, Susana Isabel Ferreira, Ilda Ribeiro, Jaqueline Ferreira, Marco Filipe, Carina Bernardo, Regina Arantes-Rodrigues, Paula Oliveira, Lúcio Santos

Published in: Tumor Biology | Issue 5/2014

Login to get access

Abstract

Several genomic regions are frequently altered and associated with the type, stage and progression of urinary bladder cancer (UBC). We present the characterization of 5637, T24 and HT1376 UBC cell lines by karyotyping, fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and multiplex ligation-dependent probe amplification (MLPA) analysis. Some cytogenetic anomalies present in UBC were found in the three cell lines, such as chromosome 20 aneuploidy and the loss of 9p21. Some gene loci losses (e.g. CDKN2A) and gains (e.g. HRAS, BCL2L1 and PTPN1) were coincident across all cell lines. Although some significant heterogeneity and complexity were detected between them, their genomic profiles exhibited a similar pattern to UBC. We suggest that 5637 and HT1376 represent the E2F3/RB1 pathway due to amplification of 6p22.3, concomitant with loss of one copy of RB1 and mutation of the remaining copy. The HT1376 presented a 10q deletion involving PTEN region and no alteration of PIK3CA region which, in combination with the inactivation of TP53, bears more invasive and metastatic properties than 5637. The T24 belongs to the alternative pathway of FGFR3/CCND1 by presenting mutated HRAS and over-represented CCND1. These cell lines cover the more frequent subtypes of UBC and are reliable models that can be used, as a group, in preclinical studies.
Literature
2.
go back to reference Höglund M. The bladder cancer genome; chromosomal changes as prognostic makers, opportunities, and obstacles. Urol Oncol. 2012;30(4):533–40.CrossRefPubMed Höglund M. The bladder cancer genome; chromosomal changes as prognostic makers, opportunities, and obstacles. Urol Oncol. 2012;30(4):533–40.CrossRefPubMed
3.
go back to reference Escudero D, Shirodkar S, Lokeshwar V. Bladder carcinogenesis and molecular pathways. In: Lokeshwar VB, Merseburger AS, Hautmann SH, editors. Bladder tumours: molecular aspects and clinical management. Totowa: Humana; 2011. p. 29–32. Escudero D, Shirodkar S, Lokeshwar V. Bladder carcinogenesis and molecular pathways. In: Lokeshwar VB, Merseburger AS, Hautmann SH, editors. Bladder tumours: molecular aspects and clinical management. Totowa: Humana; 2011. p. 29–32.
4.
go back to reference Hatina J, Huckenbeck W, Rieder H, Seifert HH, Schulz WA. Bladder carcinoma cell lines as models of the pathobiology of bladder cancer. Review of the literature and establishment of a new progression series. Urologe A. 2008;47(6):724–34.CrossRefPubMed Hatina J, Huckenbeck W, Rieder H, Seifert HH, Schulz WA. Bladder carcinoma cell lines as models of the pathobiology of bladder cancer. Review of the literature and establishment of a new progression series. Urologe A. 2008;47(6):724–34.CrossRefPubMed
5.
go back to reference Strefford JC, Lillington DM, Steggall M, Lane TM, Nouri AME, Young BD, et al. Novel chromosome findings in bladder-cancer cell lines detected with multiplex fluorescence in situ hybridization. Cancer Genet Cytogenet. 2002;135(2):139–46.CrossRefPubMed Strefford JC, Lillington DM, Steggall M, Lane TM, Nouri AME, Young BD, et al. Novel chromosome findings in bladder-cancer cell lines detected with multiplex fluorescence in situ hybridization. Cancer Genet Cytogenet. 2002;135(2):139–46.CrossRefPubMed
6.
go back to reference Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene. 2004;23(12):2250–63.CrossRefPubMed Hurst CD, Fiegler H, Carr P, Williams S, Carter NP, Knowles MA. High-resolution analysis of genomic copy number alterations in bladder cancer by microarray-based comparative genomic hybridization. Oncogene. 2004;23(12):2250–63.CrossRefPubMed
7.
go back to reference Williams SV, Adams J, Coulter J, Summersgill BM, Shipley J, Knowles MA. Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro. Genes Chromosomes Cancer. 2005;43(4):315–28.CrossRefPubMed Williams SV, Adams J, Coulter J, Summersgill BM, Shipley J, Knowles MA. Assessment by M-FISH of karyotypic complexity and cytogenetic evolution in bladder cancer in vitro. Genes Chromosomes Cancer. 2005;43(4):315–28.CrossRefPubMed
8.
go back to reference Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.CrossRefPubMedPubMedCentral Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.CrossRefPubMedPubMedCentral
9.
go back to reference Lindgren D, Liedberg F, Andersson A, Chebil G, Gudjonsson S, Borg A, et al. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene. 2006;25(18):2685–96.CrossRefPubMed Lindgren D, Liedberg F, Andersson A, Chebil G, Gudjonsson S, Borg A, et al. Molecular characterization of early-stage bladder carcinomas by expression profiles, FGFR3 mutation status, and loss of 9q. Oncogene. 2006;25(18):2685–96.CrossRefPubMed
10.
go back to reference Tanaka T, Miyazawa K, Tsukamoto T, Kuno T, Suzuki K. Pathobiology and chemoprevention of bladder cancer. J Oncol. 2011;2011:528353.PubMedPubMedCentral Tanaka T, Miyazawa K, Tsukamoto T, Kuno T, Suzuki K. Pathobiology and chemoprevention of bladder cancer. J Oncol. 2011;2011:528353.PubMedPubMedCentral
11.
go back to reference Netto GJ. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat Rev Urol. 2011;9(1):41–51.CrossRefPubMed Netto GJ. Molecular biomarkers in urothelial carcinoma of the bladder: are we there yet? Nat Rev Urol. 2011;9(1):41–51.CrossRefPubMed
12.
go back to reference Gallucci M, Guadagni F, Marzano R, Leonardo C, Merola R, Sentinelli S. Status of the p53, p16, RB1, and HER-2 genes and chromosomes 3, 7, 9, and 17 in advanced bladder cancer: correlation with adjacent mucosa and pathological parameters. J Clin Pathol. 2005;58(4):367–71.CrossRefPubMedPubMedCentral Gallucci M, Guadagni F, Marzano R, Leonardo C, Merola R, Sentinelli S. Status of the p53, p16, RB1, and HER-2 genes and chromosomes 3, 7, 9, and 17 in advanced bladder cancer: correlation with adjacent mucosa and pathological parameters. J Clin Pathol. 2005;58(4):367–71.CrossRefPubMedPubMedCentral
13.
go back to reference Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol. 2006;24(35):5552–64.CrossRefPubMed Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol. 2006;24(35):5552–64.CrossRefPubMed
14.
go back to reference Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821.CrossRefPubMedPubMedCentral Kompier LC, Lurkin I, van der Aa MN, van Rhijn BW, van der Kwast TH, Zwarthoff EC. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy. PLoS One. 2010;5(11):e13821.CrossRefPubMedPubMedCentral
15.
go back to reference Lindgren D, Sjödahl G, Lauss M, Staaf J, Chebil G, Lovgren K. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One. 2012;7(6):e38863.CrossRefPubMedPubMedCentral Lindgren D, Sjödahl G, Lauss M, Staaf J, Chebil G, Lovgren K. Integrated genomic and gene expression profiling identifies two major genomic circuits in urothelial carcinoma. PLoS One. 2012;7(6):e38863.CrossRefPubMedPubMedCentral
16.
go back to reference Fujii T, Shimada K, Anai S, Fujimoto K, Konishi N. ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression. Cancer Sci. 2013;104(3):321–7.CrossRefPubMed Fujii T, Shimada K, Anai S, Fujimoto K, Konishi N. ALKBH2, a novel AlkB homologue, contributes to human bladder cancer progression by regulating MUC1 expression. Cancer Sci. 2013;104(3):321–7.CrossRefPubMed
17.
go back to reference Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9(3):407–11.CrossRefPubMed Ying L, Huang Y, Chen H, Wang Y, Xia L, Chen Y, et al. Downregulated MEG3 activates autophagy and increases cell proliferation in bladder cancer. Mol Biosyst. 2013;9(3):407–11.CrossRefPubMed
18.
go back to reference Ewald JA, Downs TM, Cetnar JP, Ricke WA. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma. PLoS One. 2013;8(2):e55414.CrossRefPubMedPubMedCentral Ewald JA, Downs TM, Cetnar JP, Ricke WA. Expression microarray meta-analysis identifies genes associated with Ras/MAPK and related pathways in progression of muscle-invasive bladder transition cell carcinoma. PLoS One. 2013;8(2):e55414.CrossRefPubMedPubMedCentral
19.
go back to reference Qi Y, Chang L, Li H, Yu G, Xiao W, Xia D, et al. Over-expression of LRIG3 suppresses growth and invasion of bladder cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2013;33(1):111–6.CrossRefPubMed Qi Y, Chang L, Li H, Yu G, Xiao W, Xia D, et al. Over-expression of LRIG3 suppresses growth and invasion of bladder cancer cells. J Huazhong Univ Sci Technolog Med Sci. 2013;33(1):111–6.CrossRefPubMed
20.
go back to reference Karkoulis PK, Stravopodis DJ, Konstantakou EG, Voutsinas GE. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder-cancer cell lines. Cancer Cell Int. 2013;13(1):11.CrossRefPubMedPubMedCentral Karkoulis PK, Stravopodis DJ, Konstantakou EG, Voutsinas GE. Targeted inhibition of heat shock protein 90 disrupts multiple oncogenic signaling pathways, thus inducing cell cycle arrest and programmed cell death in human urinary bladder-cancer cell lines. Cancer Cell Int. 2013;13(1):11.CrossRefPubMedPubMedCentral
21.
go back to reference Pinto-Leite R, Arantes-Rodrigues R, Palmeira C, Gaivão I, Cardoso ML, Colaço A, et al. Everolimus enhances gemcitabine-induced cytotoxicity in bladder-cancer cell lines. J Toxicol Environ Health A. 2012;75(13–15):788–99.CrossRefPubMed Pinto-Leite R, Arantes-Rodrigues R, Palmeira C, Gaivão I, Cardoso ML, Colaço A, et al. Everolimus enhances gemcitabine-induced cytotoxicity in bladder-cancer cell lines. J Toxicol Environ Health A. 2012;75(13–15):788–99.CrossRefPubMed
22.
go back to reference Chiong E, Dadbin A, Harris LD, Sabichi AL, Grossman HB. The use of short tandem repeat profiling to characterize human bladder-cancer cell lines. J Urol. 2009;181(6):2737–48.CrossRefPubMedPubMedCentral Chiong E, Dadbin A, Harris LD, Sabichi AL, Grossman HB. The use of short tandem repeat profiling to characterize human bladder-cancer cell lines. J Urol. 2009;181(6):2737–48.CrossRefPubMedPubMedCentral
23.
go back to reference Masters JR. Cell-line authentication: end the scandal of false cell lines. Nature. 2012;492(7428):186.CrossRefPubMed Masters JR. Cell-line authentication: end the scandal of false cell lines. Nature. 2012;492(7428):186.CrossRefPubMed
24.
go back to reference Vasconcelos-Nóbrega C, Pinto-Leite R, Arantes-Rodrigues R, Ferreira R, Brochado P, Cardoso ML, et al. In vivo and in vitro effects of RAD001 on bladder cancer. Urol Oncol. 2011;31(7):1212–21.CrossRefPubMed Vasconcelos-Nóbrega C, Pinto-Leite R, Arantes-Rodrigues R, Ferreira R, Brochado P, Cardoso ML, et al. In vivo and in vitro effects of RAD001 on bladder cancer. Urol Oncol. 2011;31(7):1212–21.CrossRefPubMed
25.
go back to reference Arantes-Rodrigues R, Pinto-Leite R, Ferreira R, Neuparth MJ, Pires MJ, Gaivão I, et al. Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother. 2013;67(4):277–84.CrossRefPubMed Arantes-Rodrigues R, Pinto-Leite R, Ferreira R, Neuparth MJ, Pires MJ, Gaivão I, et al. Meloxicam in the treatment of in vitro and in vivo models of urinary bladder cancer. Biomed Pharmacother. 2013;67(4):277–84.CrossRefPubMed
26.
go back to reference Shaffer LG, Slovak ML, Campbell LJ. ISCN: an International System for Human Cytogenetic Nomenclature: recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. S. Karger. 2009. Shaffer LG, Slovak ML, Campbell LJ. ISCN: an International System for Human Cytogenetic Nomenclature: recommendations of the International Standing Committee on Human Cytogenetic Nomenclature. S. Karger. 2009.
27.
go back to reference Bruch J, Schulz WA, Häussler J, Melzner I, Brüderlein S, Moller P, et al. Delineation of the 6p22 amplification unit in urinary bladder carcinoma cell lines. Cancer Res. 2000;60(16):4526–30.PubMed Bruch J, Schulz WA, Häussler J, Melzner I, Brüderlein S, Moller P, et al. Delineation of the 6p22 amplification unit in urinary bladder carcinoma cell lines. Cancer Res. 2000;60(16):4526–30.PubMed
28.
go back to reference Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, Ghadimi BM, Macville M, et al. Jumping translocations are common in solid tumour cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer. 2001;30(4):349–63.CrossRefPubMed Padilla-Nash HM, Heselmeyer-Haddad K, Wangsa D, Zhang H, Ghadimi BM, Macville M, et al. Jumping translocations are common in solid tumour cell lines and result in recurrent fusions of whole chromosome arms. Genes Chromosomes Cancer. 2001;30(4):349–63.CrossRefPubMed
29.
go back to reference Fadl-Elmula I, Kytölä S, Pan Y, Lui WO, Derienzo G, Forsberg L. Characterization of chromosomal abnormalities in uroepithelial carcinomas by G-banding, spectral karyotyping and FISH analysis. Int J Cancer. 2001;92(6):824–31.CrossRefPubMed Fadl-Elmula I, Kytölä S, Pan Y, Lui WO, Derienzo G, Forsberg L. Characterization of chromosomal abnormalities in uroepithelial carcinomas by G-banding, spectral karyotyping and FISH analysis. Int J Cancer. 2001;92(6):824–31.CrossRefPubMed
31.
go back to reference Gildea JJ, Golden WL, Harding MA, Theodorescu D. Genetic and phenotypic changes associated with the acquisition of tumourigenicity in human bladder cancer. Genes Chromosomes Cancer. 2000;27(3):252–63.CrossRefPubMed Gildea JJ, Golden WL, Harding MA, Theodorescu D. Genetic and phenotypic changes associated with the acquisition of tumourigenicity in human bladder cancer. Genes Chromosomes Cancer. 2000;27(3):252–63.CrossRefPubMed
32.
go back to reference Makridakis M, Gagos S, Petrolekas A, Roubelakis MG, Bitsika V, Stravodimos K. Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics. 2009;9(2):287–98.CrossRefPubMed Makridakis M, Gagos S, Petrolekas A, Roubelakis MG, Bitsika V, Stravodimos K. Chromosomal and proteome analysis of a new T24-based cell line model for aggressive bladder cancer. Proteomics. 2009;9(2):287–98.CrossRefPubMed
33.
34.
go back to reference da Silva GN, Evangelista AF, Magalhães DA, Macedo C, Búfalo MC, Sakamoto-Hojo ET, et al. Expression of genes related to apoptosis, cell cycle and signaling pathways are independent of TP53 status in urinary bladder cancer cells. Mol Biol Rep. 2011;38(6):4159–70.CrossRefPubMed da Silva GN, Evangelista AF, Magalhães DA, Macedo C, Búfalo MC, Sakamoto-Hojo ET, et al. Expression of genes related to apoptosis, cell cycle and signaling pathways are independent of TP53 status in urinary bladder cancer cells. Mol Biol Rep. 2011;38(6):4159–70.CrossRefPubMed
35.
go back to reference Chekaluk Y, Wu CL, Rosenberg J, Riester M, Dai Q, Lin S. Identification of nine genomic regions of amplification in urothelial carcinoma, correlation with stage, and potential prognostic and therapeutic value. PLoS One. 2013;8(4):e60927.CrossRefPubMedPubMedCentral Chekaluk Y, Wu CL, Rosenberg J, Riester M, Dai Q, Lin S. Identification of nine genomic regions of amplification in urothelial carcinoma, correlation with stage, and potential prognostic and therapeutic value. PLoS One. 2013;8(4):e60927.CrossRefPubMedPubMedCentral
36.
go back to reference Elder PA, Bell SM, Knowles MA. Deletion of two regions on chromosome 4 in bladder carcinoma: definition of a critical 750kB region at 4p16.3. Oncogene. 1994;9(12):3433–66.PubMed Elder PA, Bell SM, Knowles MA. Deletion of two regions on chromosome 4 in bladder carcinoma: definition of a critical 750kB region at 4p16.3. Oncogene. 1994;9(12):3433–66.PubMed
37.
go back to reference Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H. miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int J Oncol. 2011;39(1):13–21.PubMed Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H. miR-218 on the genomic loss region of chromosome 4p15.31 functions as a tumor suppressor in bladder cancer. Int J Oncol. 2011;39(1):13–21.PubMed
38.
go back to reference Richter J, Beffa L, Wagner U, Schraml P, Gasser TC, Moch H, et al. Patterns of chromosomal imbalances in advanced urinary bladder cancer detected by comparative genomic hybridization. Am J Pathol. 1998;153(5):1615–21.CrossRefPubMedPubMedCentral Richter J, Beffa L, Wagner U, Schraml P, Gasser TC, Moch H, et al. Patterns of chromosomal imbalances in advanced urinary bladder cancer detected by comparative genomic hybridization. Am J Pathol. 1998;153(5):1615–21.CrossRefPubMedPubMedCentral
39.
go back to reference Perucca D, Szepetowski P, Simon MP, Gaudray P. Molecular genetics of human bladder carcinomas. Cancer Genet Cytogenet. 1990;49(2):143–56.CrossRefPubMed Perucca D, Szepetowski P, Simon MP, Gaudray P. Molecular genetics of human bladder carcinomas. Cancer Genet Cytogenet. 1990;49(2):143–56.CrossRefPubMed
41.
go back to reference Höglund M, Säll T, Heim S, Mitelman F, Mandahl N, Fadl-Elmula I. Identification of cytogenetic subgroups and karyotypic pathways in transitional cell carcinoma. Cancer Res. 2001;61(22):8241–6.PubMed Höglund M, Säll T, Heim S, Mitelman F, Mandahl N, Fadl-Elmula I. Identification of cytogenetic subgroups and karyotypic pathways in transitional cell carcinoma. Cancer Res. 2001;61(22):8241–6.PubMed
43.
go back to reference Baffa R, Letko J, McClung C, LeNoir J, Vecchione A, Gomella G. Molecular genetics of bladder cancer: targets for diagnosis and therapy. J Exp Clin Cancer Res. 2006;25(2):145–60.PubMed Baffa R, Letko J, McClung C, LeNoir J, Vecchione A, Gomella G. Molecular genetics of bladder cancer: targets for diagnosis and therapy. J Exp Clin Cancer Res. 2006;25(2):145–60.PubMed
44.
go back to reference Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, et al. COSMIC (the catalogue of somatic mutations in cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.CrossRefPubMed Forbes SA, Tang G, Bindal N, Bamford S, Dawson E, Cole C, et al. COSMIC (the catalogue of somatic mutations in cancer): a resource to investigate acquired mutations in human cancer. Nucleic Acids Res. 2010;38:D652–7.CrossRefPubMed
45.
go back to reference Sanchez-Carbayo M, Socci ND, Charytonowicz E, Lu M, Prystowsky M, Childs G, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 2002;62(23):6973–80.PubMed Sanchez-Carbayo M, Socci ND, Charytonowicz E, Lu M, Prystowsky M, Childs G, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res. 2002;62(23):6973–80.PubMed
46.
go back to reference Sheahan S, Bellamy CO, Dunbar DR, Harrison DJ, Prost S. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFbeta cell cycle arrest. BMC Cancer. 2007;7:215.CrossRefPubMedPubMedCentral Sheahan S, Bellamy CO, Dunbar DR, Harrison DJ, Prost S. Deficiency of G1 regulators P53, P21Cip1 and/or pRb decreases hepatocyte sensitivity to TGFbeta cell cycle arrest. BMC Cancer. 2007;7:215.CrossRefPubMedPubMedCentral
48.
49.
go back to reference Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–46.CrossRefPubMedPubMedCentral Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell. 2009;137(6):1032–46.CrossRefPubMedPubMedCentral
50.
go back to reference Ivanov SV, Goparaju CM, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285(30):22809–17.CrossRefPubMedPubMedCentral Ivanov SV, Goparaju CM, Lopez P, Zavadil J, Toren-Haritan G, Rosenwald S, et al. Pro-tumorigenic effects of miR-31 loss in mesothelioma. J Biol Chem. 2010;285(30):22809–17.CrossRefPubMedPubMedCentral
51.
go back to reference Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V, et al. Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene. 2006;380(2):127–36.CrossRefPubMed Di Benedetto M, Bièche I, Deshayes F, Vacher S, Nouet S, Collura V, et al. Structural organization and expression of human MTUS1, a candidate 8p22 tumor suppressor gene encoding a family of angiotensin II AT2 receptor-interacting proteins, ATIP. Gene. 2006;380(2):127–36.CrossRefPubMed
52.
go back to reference Wang T, Chen YH, Hong H, Zeng Y, Zhang J, Lu JP, et al. Increased nucleotide polymorphic changes in the 5′-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene. 2009;28(4):555–64.CrossRefPubMed Wang T, Chen YH, Hong H, Zeng Y, Zhang J, Lu JP, et al. Increased nucleotide polymorphic changes in the 5′-untranslated region of delta-catenin (CTNND2) gene in prostate cancer. Oncogene. 2009;28(4):555–64.CrossRefPubMed
53.
go back to reference Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, et al. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology. 2012;291(1–3):102–12.CrossRefPubMed Medeiros M, Zheng X, Novak P, Wnek SM, Chyan V, Escudero-Lourdes C, et al. Global gene expression changes in human urothelial cells exposed to low-level monomethylarsonous acid. Toxicology. 2012;291(1–3):102–12.CrossRefPubMed
54.
go back to reference Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. GeneCards version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.
55.
go back to reference Mo L, Zheng X, Huang HY, Shapiro E, Lepor H, Cordon-Cardo, et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumourigenesis. J Clin Invest. 2007;117(2):314–25.CrossRefPubMedPubMedCentral Mo L, Zheng X, Huang HY, Shapiro E, Lepor H, Cordon-Cardo, et al. Hyperactivation of Ha-ras oncogene, but not Ink4a/Arf deficiency, triggers bladder tumourigenesis. J Clin Invest. 2007;117(2):314–25.CrossRefPubMedPubMedCentral
56.
go back to reference Blaveri E, Brewer JL, Roydasgupta R, Fridlyand J, DeVries S, Koppie T, et al. Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin Cancer Res. 2005;11(19 Pt 1):7012–22.CrossRefPubMed Blaveri E, Brewer JL, Roydasgupta R, Fridlyand J, DeVries S, Koppie T, et al. Bladder cancer stage and outcome by array-based comparative genomic hybridization. Clin Cancer Res. 2005;11(19 Pt 1):7012–22.CrossRefPubMed
57.
go back to reference Wu XR. Urothelial tumourigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713–25.CrossRefPubMed Wu XR. Urothelial tumourigenesis: a tale of divergent pathways. Nat Rev Cancer. 2005;5(9):713–25.CrossRefPubMed
58.
go back to reference Staub E, Gröne J, Mennerich D, Röpcke S, Klamann I, Hinzmann B, et al. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer. 2006;5:37.CrossRefPubMedPubMedCentral Staub E, Gröne J, Mennerich D, Röpcke S, Klamann I, Hinzmann B, et al. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer. Mol Cancer. 2006;5:37.CrossRefPubMedPubMedCentral
59.
go back to reference Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011;40:D109–14.CrossRefPubMedPubMedCentral Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2011;40:D109–14.CrossRefPubMedPubMedCentral
60.
go back to reference Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA. Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene. 2008;27(19):2716–27.CrossRefPubMed Hurst CD, Tomlinson DC, Williams SV, Platt FM, Knowles MA. Inactivation of the Rb pathway and overexpression of both isoforms of E2F3 are obligate events in bladder tumours with 6p22 amplification. Oncogene. 2008;27(19):2716–27.CrossRefPubMed
61.
go back to reference Halling-Brown MD, Bulusu KC, Patel M, Tym JE, Al-Lazikani B. canSAR: an integrated cancer public translational research and drug discovery resource. Nucleic Acids Res. 2012;40:D947–56.CrossRefPubMed Halling-Brown MD, Bulusu KC, Patel M, Tym JE, Al-Lazikani B. canSAR: an integrated cancer public translational research and drug discovery resource. Nucleic Acids Res. 2012;40:D947–56.CrossRefPubMed
62.
go back to reference Hoffmann R. A wiki for the life sciences where authorship matters. Nat Genet. 2008;40(9):1047–51.CrossRefPubMed Hoffmann R. A wiki for the life sciences where authorship matters. Nat Genet. 2008;40(9):1047–51.CrossRefPubMed
63.
go back to reference Song T, Zhang X, Zhang L, Dong J, Cai W, Gao J, et al. miR-708 promotes the development of bladder carcinoma via direct repression of caspase-2. J Cancer Res Clin Oncol. 2013;139(7):1189–98.CrossRefPubMed Song T, Zhang X, Zhang L, Dong J, Cai W, Gao J, et al. miR-708 promotes the development of bladder carcinoma via direct repression of caspase-2. J Cancer Res Clin Oncol. 2013;139(7):1189–98.CrossRefPubMed
64.
go back to reference Brait M, Munari E, Lebron C, Noordhuis MG, Begum S, Michailidi C, et al. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle. 2013;12(7):1058–70.CrossRefPubMedPubMedCentral Brait M, Munari E, Lebron C, Noordhuis MG, Begum S, Michailidi C, et al. Genome-wide methylation profiling and the PI3K-AKT pathway analysis associated with smoking in urothelial cell carcinoma. Cell Cycle. 2013;12(7):1058–70.CrossRefPubMedPubMedCentral
65.
go back to reference Thompson PA, Brewster AM, Kim-Anh D, Baladandayuthapani V, Broom BM, Ederton E, et al. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One. 2011;6(8):e23543.CrossRefPubMedPubMedCentral Thompson PA, Brewster AM, Kim-Anh D, Baladandayuthapani V, Broom BM, Ederton E, et al. Selective genomic copy number imbalances and probability of recurrence in early-stage breast cancer. PLoS One. 2011;6(8):e23543.CrossRefPubMedPubMedCentral
66.
go back to reference Orlando C, Sestini R, Vona G, Pinzani P, Bianchi S, Giacca M, et al. Detection of c-erbB-2 amplification in transitional cell bladder carcinoma using competitive PCR technique. J Urol. 1996;156(6):2089–93.CrossRefPubMed Orlando C, Sestini R, Vona G, Pinzani P, Bianchi S, Giacca M, et al. Detection of c-erbB-2 amplification in transitional cell bladder carcinoma using competitive PCR technique. J Urol. 1996;156(6):2089–93.CrossRefPubMed
67.
go back to reference Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS, et al. cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A. 2012;109(41):16606–11.CrossRefPubMedPubMedCentral Hedrich CM, Crispin JC, Rauen T, Ioannidis C, Apostolidis SA, Lo MS, et al. cAMP response element modulator α controls IL2 and IL17A expression during CD4 lineage commitment and subset distribution in lupus. Proc Natl Acad Sci U S A. 2012;109(41):16606–11.CrossRefPubMedPubMedCentral
68.
go back to reference Rosenberg E, Baniel J, Spector Y, Faerman A, Meiri E. Predicting progression of bladder urothelial carcinoma using microRNA expression. BJU Int. 2013;112(7):1027–34.PubMed Rosenberg E, Baniel J, Spector Y, Faerman A, Meiri E. Predicting progression of bladder urothelial carcinoma using microRNA expression. BJU Int. 2013;112(7):1027–34.PubMed
69.
go back to reference Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al. The DNA sequence and biological annotation of human chromosome 1. Nature. 2006;441(7091):315–21.CrossRefPubMed Gregory SG, Barlow KF, McLay KE, Kaul R, Swarbreck D, Dunham A, et al. The DNA sequence and biological annotation of human chromosome 1. Nature. 2006;441(7091):315–21.CrossRefPubMed
Metadata
Title
Genomic characterization of three urinary bladder cancer cell lines: understanding genomic types of urinary bladder cancer
Authors
Rosário Pinto-Leite
Isabel Carreira
Joana Melo
Susana Isabel Ferreira
Ilda Ribeiro
Jaqueline Ferreira
Marco Filipe
Carina Bernardo
Regina Arantes-Rodrigues
Paula Oliveira
Lúcio Santos
Publication date
01-05-2014
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 5/2014
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-013-1604-3

Other articles of this Issue 5/2014

Tumor Biology 5/2014 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine