Skip to main content
Top
Published in: Acta Neurologica Belgica 3/2014

01-09-2014 | Original Article

Genome-wide analysis of DNA methylation in an APP/PS1 mouse model of Alzheimer’s disease

Authors: Lin Cong, Jianping Jia, Wei Qin, Yan Ren, Yongxin Sun

Published in: Acta Neurologica Belgica | Issue 3/2014

Login to get access

Abstract

To investigate aberrant genome-wide CpG methylation patterns in cortex brain tissue of APP/PS1 mice and as compared to controls, which allows for identification of novel disease-associated genes. This study investigates the genome-wide DNA methylation profiles of the cortex from APP/PS1 transgenic mice and control mice using the Roche NimbleGen chip platform. Functional analysis was then conducted by Ingenuity Pathways Analysis system. The methylated DNA fragments in the genome of each sample were enriched by MeDIP and the whole-genome interrogations were hybridized to the Roche NimbleGen Human DNA Methylation 3x720 K CpG Island Plus RefSeq Promoter Array that cover 15,980 CpG islands and 20,404 reference gene promoter regions of the entire human genome. Analysis reveals 2346 CpG sites representing 485 unique genes as potentially associated with AD disease status pending confirmation in additional study. At the same time, these hyper-methylated genes display familial aggregation. An impairment of the transforming growth factor-β1 (TGF-β1) signaling pathway has been demonstrated to be specific to the AD brain and, particularly, to the early phase of the disease, supporting a role for epigenetic change of TGF-β1 in AD pathology. In future research, we will focus on TGF-β1, as it appeared to be the most promising candidate for AD.
Literature
1.
go back to reference Lue LF, Brachova L, Civin WH, Rogers J (1996) Inflammation, a beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 55:1083–1088PubMed Lue LF, Brachova L, Civin WH, Rogers J (1996) Inflammation, a beta deposition, and neurofibrillary tangle formation as correlates of Alzheimer’s disease neurodegeneration. J Neuropathol Exp Neurol 55:1083–1088PubMed
2.
go back to reference Mastroeni D, Mckee A, Grover A, Rogers J, Coleman PD (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617PubMedCrossRefPubMedCentral Mastroeni D, Mckee A, Grover A, Rogers J, Coleman PD (2009) Epigenetic differences in cortical neurons from a pair of monozygotic twins discordant for Alzheimer’s disease. PLoS One 4:e6617PubMedCrossRefPubMedCentral
3.
go back to reference Räihä I, Kaprio J, Koskenvuo M, Rajala T, Sourander L (1997) Alzheimer’s disease in twins. Biomed Pharmacother 51:101–104PubMedCrossRef Räihä I, Kaprio J, Koskenvuo M, Rajala T, Sourander L (1997) Alzheimer’s disease in twins. Biomed Pharmacother 51:101–104PubMedCrossRef
4.
go back to reference Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP et al (2012) Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimer’s Dis 29:571–588 Bakulski KM, Dolinoy DC, Sartor MA, Paulson HL, Konen JR, Lieberman AP et al (2012) Genome-wide DNA methylation differences between late-onset Alzheimer’s disease and cognitively normal controls in human frontal cortex. J Alzheimer’s Dis 29:571–588
5.
go back to reference Felsenfeld G (2007) A brief history of epigenetics. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Maine, pp 15–22 Felsenfeld G (2007) A brief history of epigenetics. In: Allis CD, Jenuwein T, Reinberg D (eds) Epigenetics. Cold Spring Harbor Laboratory Press, Maine, pp 15–22
6.
go back to reference Mastroeni D, Grover A, Elaine Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32:1161–1180PubMedCrossRefPubMedCentral Mastroeni D, Grover A, Elaine Delvaux E, Whiteside C, Coleman PD, Rogers J (2011) Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32:1161–1180PubMedCrossRefPubMedCentral
7.
go back to reference Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257PubMedCrossRefPubMedCentral Maunakea AK, Nagarajan RP, Bilenky M, Ballinger TJ, D’Souza C, Fouse SD et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257PubMedCrossRefPubMedCentral
9.
go back to reference Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–292PubMed Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Genda Y, Ukitsu M (1999) Reduction with age in methylcytosine in the promoter region -224 approximately -101 of the amyloid precursor protein gene in autopsy human cortex. Brain Res Mol Brain Res 70:288–292PubMed
10.
go back to reference Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y (1999) The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275:89–92PubMedCrossRef Tohgi H, Utsugisawa K, Nagane Y, Yoshimura M, Ukitsu M, Genda Y (1999) The methylation status of cytosines in a tau gene promoter region alters with age to downregulate transcriptional activity in human cerebral cortex. Neurosci Lett 275:89–92PubMedCrossRef
11.
go back to reference Barrachina M, Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68:880–891PubMed Barrachina M, Ferrer I (2009) DNA methylation of Alzheimer disease and tauopathy-related genes in postmortem brain. J Neuropathol Exp Neurol 68:880–891PubMed
12.
go back to reference Mill J (2011) Toward an integrated genetic and epigenetic approach to Alzheimer’s disease. Neurobiol Aging 32:1188–1191PubMedCrossRef Mill J (2011) Toward an integrated genetic and epigenetic approach to Alzheimer’s disease. Neurobiol Aging 32:1188–1191PubMedCrossRef
13.
go back to reference Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510PubMedCrossRef Chouliaras L, Rutten BP, Kenis G, Peerbooms O, Visser PJ, Verhey F et al (2010) Epigenetic regulation in the pathophysiology of Alzheimer’s disease. Prog Neurobiol 90:498–510PubMedCrossRef
14.
go back to reference Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27:6771–6780PubMedCrossRef Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C (2007) Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 27:6771–6780PubMedCrossRef
15.
go back to reference Lalonde R, Kim HD, Fukuchi K (2004) Exploratory activity, anxiety, and motor coordination in bigenic APPswe t PS1/DeltaE9 mice. Neurosci Lett 369:156e61CrossRef Lalonde R, Kim HD, Fukuchi K (2004) Exploratory activity, anxiety, and motor coordination in bigenic APPswe t PS1/DeltaE9 mice. Neurosci Lett 369:156e61CrossRef
16.
go back to reference Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C et al (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22:3445e53 Dewachter I, Reversé D, Caluwaerts N, Ris L, Kuipéri C, Van den Haute C et al (2002) Neuronal deficiency of presenilin 1 inhibits amyloid plaque formation and corrects hippocampal long-term potentiation but not a cognitive defect of amyloid precursor protein [V717I] transgenic mice. J Neurosci 22:3445e53
17.
go back to reference Spuch C, Antequera D, Portero A, Orive G, Hernandez RM, Molina JA et al (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31:5608–5618PubMedCrossRef Spuch C, Antequera D, Portero A, Orive G, Hernandez RM, Molina JA et al (2010) The effect of encapsulated VEGF-secreting cells on brain amyloid load and behavioral impairment in a mouse model of Alzheimer’s disease. Biomaterials 31:5608–5618PubMedCrossRef
19.
go back to reference Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550PubMedCrossRefPubMedCentral Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550PubMedCrossRefPubMedCentral
20.
go back to reference Aguilera O, Fernandez AF, Munoz A, Fraga MF (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109:243–251PubMedCrossRef Aguilera O, Fernandez AF, Munoz A, Fraga MF (2010) Epigenetics and environment: a complex relationship. J Appl Physiol 109:243–251PubMedCrossRef
21.
go back to reference Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307PubMedCrossRef Dolinoy DC, Weidman JR, Jirtle RL (2007) Epigenetic gene regulation: linking early developmental environment to adult disease. Reprod Toxicol 23:297–307PubMedCrossRef
22.
go back to reference Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262PubMedCrossRef Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262PubMedCrossRef
23.
go back to reference Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS (2010) Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 5:e8564PubMedCrossRefPubMedCentral Movassagh M, Choy MK, Goddard M, Bennett MR, Down TA, Foo RS (2010) Differential DNA methylation correlates with differential expression of angiogenic factors in human heart failure. PLoS One 5:e8564PubMedCrossRefPubMedCentral
24.
go back to reference Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P et al (2009) Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2:34PubMedCrossRefPubMedCentral Li M, Balch C, Montgomery JS, Jeong M, Chung JH, Yan P et al (2009) Integrated analysis of DNA methylation and gene expression reveals specific signaling pathways associated with platinum resistance in ovarian cancer. BMC Med Genomics 2:34PubMedCrossRefPubMedCentral
25.
go back to reference Xin Yurong, Chanrion Benjamin, Liu Meng-Min (2010) Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. PLoS One 5(6):e11357PubMedCrossRefPubMedCentral Xin Yurong, Chanrion Benjamin, Liu Meng-Min (2010) Genome-wide divergence of DNA methylation marks in cerebral and cerebellar cortices. PLoS One 5(6):e11357PubMedCrossRefPubMedCentral
26.
go back to reference Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389(6651):603–606PubMedCrossRef Wyss-Coray T, Masliah E, Mallory M, McConlogue L, Johnson-Wood K, Lin C, Mucke L (1997) Amyloidogenic role of cytokine TGF-beta1 in transgenic mice and in Alzheimer’s disease. Nature 389(6651):603–606PubMedCrossRef
27.
go back to reference Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A (2012) Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 347(1):291–301PubMedCrossRef Caraci F, Spampinato S, Sortino MA, Bosco P, Battaglia G, Bruno V, Drago F, Nicoletti F, Copani A (2012) Dysfunction of TGF-β1 signaling in Alzheimer’s disease: perspectives for neuroprotection. Cell Tissue Res 347(1):291–301PubMedCrossRef
28.
go back to reference Ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273PubMedCrossRef Ten Dijke P, Hill CS (2004) New insights into TGF-beta-Smad signalling. Trends Biochem Sci 29:265–273PubMedCrossRef
29.
go back to reference Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRef Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA (2006) Transforming growth factor-β regulation of immune responses. Annu Rev Immunol 24:99–146PubMedCrossRef
30.
go back to reference Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069PubMedCrossRefPubMedCentral Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069PubMedCrossRefPubMedCentral
31.
go back to reference Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML et al (2009) TGF-beta1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17:237–249PubMedCrossRef Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML et al (2009) TGF-beta1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17:237–249PubMedCrossRef
32.
go back to reference Wang H, Liu J, Zong Y, Xu Y, Zhu H, Deng W et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174PubMed Wang H, Liu J, Zong Y, Xu Y, Zhu H, Deng W et al (2010) miR-106b aberrantly expressed in a double transgenic mouse model for Alzheimer’s disease targets TGF-β type II receptor. Brain Res 1357:166–174PubMed
33.
go back to reference Lee HG, Ueda M, Zhu X, Perry G, Smith MA (2006) Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? J Neurosci Res 84:1856–1861PubMedCrossRef Lee HG, Ueda M, Zhu X, Perry G, Smith MA (2006) Ectopic expression of phospho-Smad2 in Alzheimer’s disease: uncoupling of the transforming growth factor-beta pathway? J Neurosci Res 84:1856–1861PubMedCrossRef
34.
go back to reference Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069PubMedCrossRefPubMedCentral Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV et al (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069PubMedCrossRefPubMedCentral
35.
go back to reference Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24:2327–2334PubMedCrossRef Ueberham U, Ueberham E, Gruschka H, Arendt T (2006) Altered subcellular location of phosphorylated Smads in Alzheimer’s disease. Eur J Neurosci 24:2327–2334PubMedCrossRef
36.
go back to reference Chalmers KA, Love S (2007) Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol 66:158–167PubMed Chalmers KA, Love S (2007) Neurofibrillary tangles may interfere with Smad 2/3 signaling in neurons. J Neuropathol Exp Neurol 66:158–167PubMed
37.
go back to reference Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A et al (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39:1555–1561PubMedCrossRef Mocali A, Cedrola S, Della Malva N, Bontempelli M, Mitidieri VA, Bavazzano A et al (2004) Increased plasma levels of soluble CD40, together with the decrease of TGF beta 1, as possible differential markers of Alzheimer disease. Exp Gerontol 39:1555–1561PubMedCrossRef
38.
go back to reference Juraskova B, Andrys C, Holmerova I, Solichova D, Hrnciarikova D, Vankova H et al (2010) Transforming growth factor beta and soluble endoglin in the healthy senior and in Alzheimer’s disease patients. J Nutr Health Aging 14:758–761PubMedCrossRef Juraskova B, Andrys C, Holmerova I, Solichova D, Hrnciarikova D, Vankova H et al (2010) Transforming growth factor beta and soluble endoglin in the healthy senior and in Alzheimer’s disease patients. J Nutr Health Aging 14:758–761PubMedCrossRef
39.
go back to reference Luppi C, Fioravanti M, Bertolini B, Grugnetti A, Inguscio M, Guerriero F et al (2009) Growth factors decrease in subjects with mild to moderate Alzheimer’s disease (AD): potential correction with dehydroepiandrosteronesulphate (DHEAS). Arch Gerontol Geriatr 49:173–184PubMedCrossRef Luppi C, Fioravanti M, Bertolini B, Grugnetti A, Inguscio M, Guerriero F et al (2009) Growth factors decrease in subjects with mild to moderate Alzheimer’s disease (AD): potential correction with dehydroepiandrosteronesulphate (DHEAS). Arch Gerontol Geriatr 49:173–184PubMedCrossRef
40.
go back to reference Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedCrossRefPubMedCentral Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon G, Tonti-Filippini J et al (2009) Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 462:315–322PubMedCrossRefPubMedCentral
41.
go back to reference Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766PubMed
42.
Metadata
Title
Genome-wide analysis of DNA methylation in an APP/PS1 mouse model of Alzheimer’s disease
Authors
Lin Cong
Jianping Jia
Wei Qin
Yan Ren
Yongxin Sun
Publication date
01-09-2014
Publisher
Springer Milan
Published in
Acta Neurologica Belgica / Issue 3/2014
Print ISSN: 0300-9009
Electronic ISSN: 2240-2993
DOI
https://doi.org/10.1007/s13760-013-0267-6

Other articles of this Issue 3/2014

Acta Neurologica Belgica 3/2014 Go to the issue