Skip to main content
Top
Published in: Cancer Cell International 1/2013

Open Access 01-12-2013 | Primary research

Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis

Authors: Xin Xie, Shan Shan Wang, Timothy Chung Sing Wong, Ming Chiu Fung

Published in: Cancer Cell International | Issue 1/2013

Login to get access

Abstract

Background

Apoptosis is a major target and treatment effect of multiple chemotherapeutical agents in cancer. A soybean isoflavone, genistein, is a well-studied chemopreventive agent and has been reported to potentiate the anticancer effect of some chemotherapeutics. However, its mechanistic basis of chemo-enhancement effect remains to be fully elucidated.

Methods

Apoptotic features of low concentration stressed cancer cells were studied by microscopic method, western blot, immunostaining and annexin V/PI assay. Genistein’s effects on unstressed cells and recovering cells were investigated using MTT cell viability assay and LDH cytotoxicity assay. Quantitative real-time PCR was employed to analyze the possible gene targets involved in the recovery and genistein’s effect.

Results

Low-concentration ethanol stressed cancer cells showed apoptotic features and could recover after stress removal. In stressed cells, genistein at sub-toxic dosage promoted the cell death. Quantitative real-time PCR revealed the up-regulation of anti-apoptotic genes MDM2 and XIAP during the recovery process in HeLa cells, and genistein treatment suppressed their expression. The application of genistein, MDM2 inhibitor and XIAP inhibitor to the recovering HeLa cells caused persistent caspase activity and enhanced cell death. Flow cytometry study indicated that genistein treatment could lead to persistent phosphatidylserine (PS) externalization and necrotic events in the recovering HeLa cells. Caspase activity inhibition shifted the major effect of genistein to necrosis.

Conclusions

These results suggested two possible mechanisms through which genistein promoted cell death in stressed cancer cells. Genistein could maintain the existing apoptotic signal to enhance apoptotic cell death. It could also disrupt the recovering process in caspase-independent manner, which lead to necrotic events. These effects may be related to the enhanced antitumor effect of chemotherapeutic drugs when they were combined with genistein.
Appendix
Available only for authorised users
Literature
1.
go back to reference Chabner BA, Roberts TG: Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005, 5 (1): 65-72. 10.1038/nrc1529.CrossRefPubMed Chabner BA, Roberts TG: Timeline: chemotherapy and the war on cancer. Nat Rev Cancer. 2005, 5 (1): 65-72. 10.1038/nrc1529.CrossRefPubMed
2.
go back to reference Kasibhatla S, Tseng B: Why target apoptosis in cancer treatment?. Mol Cancer Ther. 2003, 2 (6): 573-580.PubMed Kasibhatla S, Tseng B: Why target apoptosis in cancer treatment?. Mol Cancer Ther. 2003, 2 (6): 573-580.PubMed
3.
go back to reference Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108 (2): 153-164. 10.1016/S0092-8674(02)00625-6.CrossRefPubMed Johnstone RW, Ruefli AA, Lowe SW: Apoptosis: a link between cancer genetics and chemotherapy. Cell. 2002, 108 (2): 153-164. 10.1016/S0092-8674(02)00625-6.CrossRefPubMed
4.
go back to reference Dive C, Hickman JA: Drug-target interactions: only the first step in the commitment to a programmed cell death?. Br J Cancer. 1991, 64 (1): 192-196. 10.1038/bjc.1991.269.PubMedCentralCrossRefPubMed Dive C, Hickman JA: Drug-target interactions: only the first step in the commitment to a programmed cell death?. Br J Cancer. 1991, 64 (1): 192-196. 10.1038/bjc.1991.269.PubMedCentralCrossRefPubMed
5.
go back to reference Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187 (1): 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-T.CrossRefPubMed Schmitt CA, Lowe SW: Apoptosis and therapy. J Pathol. 1999, 187 (1): 127-137. 10.1002/(SICI)1096-9896(199901)187:1<127::AID-PATH251>3.0.CO;2-T.CrossRefPubMed
6.
go back to reference Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed Hanahan D, Weinberg RA: The hallmarks of cancer. Cell. 2000, 100 (1): 57-70. 10.1016/S0092-8674(00)81683-9.CrossRefPubMed
7.
go back to reference Gerl R, Vaux DL: Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005, 26 (2): 263-270.CrossRefPubMed Gerl R, Vaux DL: Apoptosis in the development and treatment of cancer. Carcinogenesis. 2005, 26 (2): 263-270.CrossRefPubMed
8.
go back to reference Lowe SW, Lin AW: Apoptosis in cancer. Carcinogenesis. 2000, 21 (3): 485-495. 10.1093/carcin/21.3.485.CrossRefPubMed Lowe SW, Lin AW: Apoptosis in cancer. Carcinogenesis. 2000, 21 (3): 485-495. 10.1093/carcin/21.3.485.CrossRefPubMed
9.
go back to reference Letai AG: Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008, 8 (2): 121-132. 10.1038/nrc2297.CrossRefPubMed Letai AG: Diagnosing and exploiting cancer’s addiction to blocks in apoptosis. Nat Rev Cancer. 2008, 8 (2): 121-132. 10.1038/nrc2297.CrossRefPubMed
10.
go back to reference Kurahashi N, Iwasaki M, Inoue M, Sasazuki S, Tsugane S: Plasma isoflavones and subsequent risk of prostate cancer in a nested case–control study: the Japan Public Health Center. J Clin Oncol. 2008, 26 (36): 5923-5929. 10.1200/JCO.2008.16.8807.CrossRefPubMed Kurahashi N, Iwasaki M, Inoue M, Sasazuki S, Tsugane S: Plasma isoflavones and subsequent risk of prostate cancer in a nested case–control study: the Japan Public Health Center. J Clin Oncol. 2008, 26 (36): 5923-5929. 10.1200/JCO.2008.16.8807.CrossRefPubMed
11.
go back to reference Shon YH, Park SD, Nam KS: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol. 2006, 39 (4): 448-451. 10.5483/BMBRep.2006.39.4.448.CrossRefPubMed Shon YH, Park SD, Nam KS: Effective chemopreventive activity of genistein against human breast cancer cells. J Biochem Mol Biol. 2006, 39 (4): 448-451. 10.5483/BMBRep.2006.39.4.448.CrossRefPubMed
12.
go back to reference Taylor CK, Levy RM, Elliott JC, Burnett BP: The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev. 2009, 67 (7): 398-415. 10.1111/j.1753-4887.2009.00213.x.CrossRefPubMed Taylor CK, Levy RM, Elliott JC, Burnett BP: The effect of genistein aglycone on cancer and cancer risk: a review of in vitro, preclinical, and clinical studies. Nutr Rev. 2009, 67 (7): 398-415. 10.1111/j.1753-4887.2009.00213.x.CrossRefPubMed
13.
go back to reference Li Y, Upadhyay S, Bhuiyan M, Sarkar FH: Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene. 1999, 18 (20): 3166-3172. 10.1038/sj.onc.1202650.CrossRefPubMed Li Y, Upadhyay S, Bhuiyan M, Sarkar FH: Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene. 1999, 18 (20): 3166-3172. 10.1038/sj.onc.1202650.CrossRefPubMed
14.
go back to reference Barnes S: Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995, 125 (3 Suppl): 777S-783S.PubMed Barnes S: Effect of genistein on in vitro and in vivo models of cancer. J Nutr. 1995, 125 (3 Suppl): 777S-783S.PubMed
15.
go back to reference Hwang JT, Ha J, Park OJ: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005, 332 (2): 433-440. 10.1016/j.bbrc.2005.04.143.CrossRefPubMed Hwang JT, Ha J, Park OJ: Combination of 5-fluorouracil and genistein induces apoptosis synergistically in chemo-resistant cancer cells through the modulation of AMPK and COX-2 signaling pathways. Biochem Biophys Res Commun. 2005, 332 (2): 433-440. 10.1016/j.bbrc.2005.04.143.CrossRefPubMed
16.
go back to reference Shen J, Tai YC, Zhou J, Stephen Wong CH, Cheang PT, Fred Wong WS, Xie Z, Khan M, Han JH, Chen CS: Synergistic antileukemia effect of genistein and chemotherapy in mouse xenograft model and potential mechanism through MAPK signaling. Exp Hematol. 2007, 35 (1): 75-83.CrossRefPubMed Shen J, Tai YC, Zhou J, Stephen Wong CH, Cheang PT, Fred Wong WS, Xie Z, Khan M, Han JH, Chen CS: Synergistic antileukemia effect of genistein and chemotherapy in mouse xenograft model and potential mechanism through MAPK signaling. Exp Hematol. 2007, 35 (1): 75-83.CrossRefPubMed
17.
go back to reference Kim SH, Kim SH, Kim YB, Jeon YT, Lee SC, Song YS: Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells. Ann Ny Acad Sci. 2009, 1171: 495-500. 10.1111/j.1749-6632.2009.04899.x.CrossRefPubMed Kim SH, Kim SH, Kim YB, Jeon YT, Lee SC, Song YS: Genistein Inhibits Cell Growth by Modulating Various Mitogen-Activated Protein Kinases and AKT in Cervical Cancer Cells. Ann Ny Acad Sci. 2009, 1171: 495-500. 10.1111/j.1749-6632.2009.04899.x.CrossRefPubMed
18.
go back to reference Sasamura H, Takahashi A, Yuan J, Kitamura H, Masumori N, Miyao N, Itoh N, Tsukamoto T: Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology. 2004, 64 (2): 389-393. 10.1016/j.urology.2004.03.045.CrossRefPubMed Sasamura H, Takahashi A, Yuan J, Kitamura H, Masumori N, Miyao N, Itoh N, Tsukamoto T: Antiproliferative and antiangiogenic activities of genistein in human renal cell carcinoma. Urology. 2004, 64 (2): 389-393. 10.1016/j.urology.2004.03.045.CrossRefPubMed
19.
go back to reference Sarkar FH: Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005, 65 (19): 9064-9072. 10.1158/0008-5472.CAN-05-1330.CrossRefPubMed Sarkar FH: Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005, 65 (19): 9064-9072. 10.1158/0008-5472.CAN-05-1330.CrossRefPubMed
20.
go back to reference Suvarna B, Debashis S, Robert T, David LD, James DB: Gene Expression Changes Induced by Genistein in the Prostate Cancer Cell Line LNCaP. Open Prost Cancer J. 2010, 3: 86-98.CrossRef Suvarna B, Debashis S, Robert T, David LD, James DB: Gene Expression Changes Induced by Genistein in the Prostate Cancer Cell Line LNCaP. Open Prost Cancer J. 2010, 3: 86-98.CrossRef
21.
go back to reference Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH: Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005, 65 (15): 6934-6942. 10.1158/0008-5472.CAN-04-4604.CrossRefPubMed Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH: Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res. 2005, 65 (15): 6934-6942. 10.1158/0008-5472.CAN-04-4604.CrossRefPubMed
22.
go back to reference Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH: Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005, 65 (19): 9064-9072. 10.1158/0008-5472.CAN-05-1330.CrossRefPubMed Banerjee S, Zhang Y, Ali S, Bhuiyan M, Wang Z, Chiao PJ, Philip PA, Abbruzzese J, Sarkar FH: Molecular evidence for increased antitumor activity of gemcitabine by genistein in vitro and in vivo using an orthotopic model of pancreatic cancer. Cancer Res. 2005, 65 (19): 9064-9072. 10.1158/0008-5472.CAN-05-1330.CrossRefPubMed
23.
go back to reference Sarkar FH, Li YW: Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res. 2006, 66 (7): 3347-3350. 10.1158/0008-5472.CAN-05-4526.CrossRefPubMed Sarkar FH, Li YW: Using chemopreventive agents to enhance the efficacy of cancer therapy. Cancer Res. 2006, 66 (7): 3347-3350. 10.1158/0008-5472.CAN-05-4526.CrossRefPubMed
24.
go back to reference Castaneda F, Rosin-Steiner S: Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways. Int J Med Sci. 2006, 3 (4): 160-167.PubMedCentralCrossRefPubMed Castaneda F, Rosin-Steiner S: Low concentration of ethanol induce apoptosis in HepG2 cells: role of various signal transduction pathways. Int J Med Sci. 2006, 3 (4): 160-167.PubMedCentralCrossRefPubMed
25.
go back to reference Zhou Z, Sun X, Kang YJ: Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. Am J Pathol. 2001, 159 (1): 329-338. 10.1016/S0002-9440(10)61699-9.PubMedCentralCrossRefPubMed Zhou Z, Sun X, Kang YJ: Ethanol-induced apoptosis in mouse liver: Fas- and cytochrome c-mediated caspase-3 activation pathway. Am J Pathol. 2001, 159 (1): 329-338. 10.1016/S0002-9440(10)61699-9.PubMedCentralCrossRefPubMed
26.
go back to reference Asai K, Buurman WA, Reutelingsperger CP, Schutte B, Kaminishi M: Low concentrations of ethanol induce apoptosis in human intestinal cells. Scand J Gastroenterol. 2003, 38 (11): 1154-1161. 10.1080/00365520310006252.CrossRefPubMed Asai K, Buurman WA, Reutelingsperger CP, Schutte B, Kaminishi M: Low concentrations of ethanol induce apoptosis in human intestinal cells. Scand J Gastroenterol. 2003, 38 (11): 1154-1161. 10.1080/00365520310006252.CrossRefPubMed
27.
go back to reference Wu D, Cederbaum AI: Ethanol-induced apoptosis to stable HepG2 cell lines expressing human cytochrome P-4502E1. Alcohol Clin Exp Res. 1999, 23 (1): 67-76. 10.1111/j.1530-0277.1999.tb04025.x.CrossRefPubMed Wu D, Cederbaum AI: Ethanol-induced apoptosis to stable HepG2 cell lines expressing human cytochrome P-4502E1. Alcohol Clin Exp Res. 1999, 23 (1): 67-76. 10.1111/j.1530-0277.1999.tb04025.x.CrossRefPubMed
28.
go back to reference Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Bio. 2008, 9 (3): 231-241.CrossRef Taylor RC, Cullen SP, Martin SJ: Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Bio. 2008, 9 (3): 231-241.CrossRef
29.
go back to reference Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16 (1): 3-11. 10.1038/cdd.2008.150.PubMedCentralCrossRefPubMed Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ. 2009, 16 (1): 3-11. 10.1038/cdd.2008.150.PubMedCentralCrossRefPubMed
30.
go back to reference Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19 (1): 107-120. 10.1038/cdd.2011.96.PubMedCentralCrossRefPubMed Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S: Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ. 2012, 19 (1): 107-120. 10.1038/cdd.2011.96.PubMedCentralCrossRefPubMed
31.
go back to reference Hammill AK, Uhr JW, Scheuermann RH: Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res. 1999, 251 (1): 16-21. 10.1006/excr.1999.4581.CrossRefPubMed Hammill AK, Uhr JW, Scheuermann RH: Annexin V staining due to loss of membrane asymmetry can be reversible and precede commitment to apoptotic death. Exp Cell Res. 1999, 251 (1): 16-21. 10.1006/excr.1999.4581.CrossRefPubMed
32.
go back to reference Geske FJ, Lieberman R, Strange R, Gerschenson LE: Early stages of p53-induced apoptosis are reversible. Cell Death Differ. 2001, 8 (2): 182-191. 10.1038/sj.cdd.4400786.CrossRefPubMed Geske FJ, Lieberman R, Strange R, Gerschenson LE: Early stages of p53-induced apoptosis are reversible. Cell Death Differ. 2001, 8 (2): 182-191. 10.1038/sj.cdd.4400786.CrossRefPubMed
33.
go back to reference Wang K, Brems JJ, Gamelli RL, Ding J: Reversibility of caspase activation and its role during glycochenodeoxycholate-induced hepatocyte apoptosis. J Bio Chem. 2005, 280 (25): 23490-23495. 10.1074/jbc.M411607200.CrossRef Wang K, Brems JJ, Gamelli RL, Ding J: Reversibility of caspase activation and its role during glycochenodeoxycholate-induced hepatocyte apoptosis. J Bio Chem. 2005, 280 (25): 23490-23495. 10.1074/jbc.M411607200.CrossRef
34.
35.
36.
37.
go back to reference Salvesen GS, Duckett CS: IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002, 3 (6): 401-410. 10.1038/nrm830.CrossRefPubMed Salvesen GS, Duckett CS: IAP proteins: blocking the road to death’s door. Nat Rev Mol Cell Biol. 2002, 3 (6): 401-410. 10.1038/nrm830.CrossRefPubMed
38.
go back to reference Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472.CrossRefPubMed Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C: In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science. 2004, 303 (5659): 844-848. 10.1126/science.1092472.CrossRefPubMed
39.
go back to reference Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1 (14): 1001-1008.PubMed Moll UM, Petrenko O: The MDM2-p53 interaction. Mol Cancer Res. 2003, 1 (14): 1001-1008.PubMed
40.
go back to reference Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME: Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999, 286 (5443): 1358-1362. 10.1126/science.286.5443.1358.CrossRefPubMed Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME: Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science. 1999, 286 (5443): 1358-1362. 10.1126/science.286.5443.1358.CrossRefPubMed
41.
go back to reference Du KY, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273 (49): 32377-32379. 10.1074/jbc.273.49.32377.CrossRefPubMed Du KY, Montminy M: CREB is a regulatory target for the protein kinase Akt/PKB. J Biol Chem. 1998, 273 (49): 32377-32379. 10.1074/jbc.273.49.32377.CrossRefPubMed
42.
go back to reference Yan C, Lu D, Hai T, Boyd DD: Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2005, 24 (13): 2425-2435. 10.1038/sj.emboj.7600712.PubMedCentralCrossRefPubMed Yan C, Lu D, Hai T, Boyd DD: Activating transcription factor 3, a stress sensor, activates p53 by blocking its ubiquitination. EMBO J. 2005, 24 (13): 2425-2435. 10.1038/sj.emboj.7600712.PubMedCentralCrossRefPubMed
43.
go back to reference Mashima T, Udagawa S, Tsuruo T: Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J Cell Physiol. 2001, 188 (3): 352-358. 10.1002/jcp.1130.CrossRefPubMed Mashima T, Udagawa S, Tsuruo T: Involvement of transcriptional repressor ATF3 in acceleration of caspase protease activation during DNA damaging agent-induced apoptosis. J Cell Physiol. 2001, 188 (3): 352-358. 10.1002/jcp.1130.CrossRefPubMed
44.
go back to reference Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003, 302 (5647): 1036-1038. 10.1126/science.1090072.CrossRefPubMed Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ, Adams JM, Strasser A: p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science. 2003, 302 (5647): 1036-1038. 10.1126/science.1090072.CrossRefPubMed
45.
46.
go back to reference Wang JM, Chao JR, Chen WH, Kuo ML, Yen JY, Yen HFY: The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-Kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999, 19 (9): 6195-6206.PubMedCentralPubMed Wang JM, Chao JR, Chen WH, Kuo ML, Yen JY, Yen HFY: The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-Kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999, 19 (9): 6195-6206.PubMedCentralPubMed
47.
go back to reference Gong LJ, Li YW, Nedeljkovic-Kurepa A, Sarkar FH: Inactivation of NF-kappa B by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene. 2003, 22 (30): 4702-4709. 10.1038/sj.onc.1206583.CrossRefPubMed Gong LJ, Li YW, Nedeljkovic-Kurepa A, Sarkar FH: Inactivation of NF-kappa B by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene. 2003, 22 (30): 4702-4709. 10.1038/sj.onc.1206583.CrossRefPubMed
48.
go back to reference Li Y, Sarkar FH: Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res. 2002, 8 (7): 2369-2377.PubMed Li Y, Sarkar FH: Inhibition of nuclear factor kappaB activation in PC3 cells by genistein is mediated via Akt signaling pathway. Clin Cancer Res. 2002, 8 (7): 2369-2377.PubMed
49.
go back to reference Nelson EC, Evans CP, Mack PC, Devere-White RW, Lara PN: Inhibition of Akt pathways in the treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2007, 10 (4): 331-339. 10.1038/sj.pcan.4500974.CrossRefPubMed Nelson EC, Evans CP, Mack PC, Devere-White RW, Lara PN: Inhibition of Akt pathways in the treatment of prostate cancer. Prostate Cancer Prostatic Dis. 2007, 10 (4): 331-339. 10.1038/sj.pcan.4500974.CrossRefPubMed
50.
go back to reference Seol DW: Up-regulation of IAPs by PI-3K: a cell survival signal-mediated anti-apoptotic mechanism. Biochem Biophys Res Commun. 2008, 377 (2): 508-511. 10.1016/j.bbrc.2008.10.021.CrossRefPubMed Seol DW: Up-regulation of IAPs by PI-3K: a cell survival signal-mediated anti-apoptotic mechanism. Biochem Biophys Res Commun. 2008, 377 (2): 508-511. 10.1016/j.bbrc.2008.10.021.CrossRefPubMed
51.
go back to reference Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J: Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998, 188 (1): 211-216. 10.1084/jem.188.1.211.PubMedCentralCrossRefPubMed Stehlik C, de Martin R, Kumabashiri I, Schmid JA, Binder BR, Lipp J: Nuclear factor (NF)-kappaB-regulated X-chromosome-linked iap gene expression protects endothelial cells from tumor necrosis factor alpha-induced apoptosis. J Exp Med. 1998, 188 (1): 211-216. 10.1084/jem.188.1.211.PubMedCentralCrossRefPubMed
52.
go back to reference Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002, 277 (24): 21843-21850. 10.1074/jbc.M109745200.CrossRefPubMed Ogawara Y, Kishishita S, Obata T, Isazawa Y, Suzuki T, Tanaka K, Masuyama N, Gotoh Y: Akt enhances Mdm2-mediated ubiquitination and degradation of p53. J Biol Chem. 2002, 277 (24): 21843-21850. 10.1074/jbc.M109745200.CrossRefPubMed
53.
go back to reference Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001, 98 (20): 11598-11603. 10.1073/pnas.181181198.PubMedCentralCrossRefPubMed Mayo LD, Donner DB: A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA. 2001, 98 (20): 11598-11603. 10.1073/pnas.181181198.PubMedCentralCrossRefPubMed
54.
go back to reference Li M, Zhang Z, Hill DL, Chen XB, Wang H, Zhang RW: Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res. 2005, 65 (18): 8200-8208. 10.1158/0008-5472.CAN-05-1302.CrossRefPubMed Li M, Zhang Z, Hill DL, Chen XB, Wang H, Zhang RW: Genistein, a dietary isoflavone, down-regulates the MDM2 oncogene at both transcriptional and posttranslational levels. Cancer Res. 2005, 65 (18): 8200-8208. 10.1158/0008-5472.CAN-05-1302.CrossRefPubMed
55.
go back to reference Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T: A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer. 2009, 8: 100-10.1186/1476-4598-8-100.PubMedCentralCrossRefPubMed Nakamura Y, Yogosawa S, Izutani Y, Watanabe H, Otsuji E, Sakai T: A combination of indol-3-carbinol and genistein synergistically induces apoptosis in human colon cancer HT-29 cells by inhibiting Akt phosphorylation and progression of autophagy. Mol Cancer. 2009, 8: 100-10.1186/1476-4598-8-100.PubMedCentralCrossRefPubMed
57.
go back to reference Testa JR, Tsichlis PN: AKT signaling in normal and malignant cells. Oncogene. 2005, 24 (50): 7391-7393. 10.1038/sj.onc.1209100.CrossRefPubMed Testa JR, Tsichlis PN: AKT signaling in normal and malignant cells. Oncogene. 2005, 24 (50): 7391-7393. 10.1038/sj.onc.1209100.CrossRefPubMed
Metadata
Title
Genistein promotes cell death of ethanol-stressed HeLa cells through the continuation of apoptosis or secondary necrosis
Authors
Xin Xie
Shan Shan Wang
Timothy Chung Sing Wong
Ming Chiu Fung
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2013
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/1475-2867-13-63

Other articles of this Issue 1/2013

Cancer Cell International 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine