Skip to main content
Top
Published in: Current Cardiology Reports 10/2016

01-10-2016 | Cardiovascular Genomics (TL Assimes, Section Editor)

Genetics and Genomics of Coronary Artery Disease

Authors: Milos Pjanic, Clint L. Miller, Robert Wirka, Juyong B. Kim, Daniel M. DiRenzo, Thomas Quertermous

Published in: Current Cardiology Reports | Issue 10/2016

Login to get access

Abstract

Coronary artery disease (or coronary heart disease), is the leading cause of mortality in many of the developing as well as the developed countries of the world. Cholesterol-enriched plaques in the heart’s blood vessels combined with inflammation lead to the lesion expansion, narrowing of blood vessels, reduced blood flow, and may subsequently cause lesion rupture and a heart attack. Even though several environmental risk factors have been established, such as high LDL-cholesterol, diabetes, and high blood pressure, the underlying genetic composition may substantially modify the disease risk; hence, genome composition and gene-environment interactions may be critical for disease progression. Ongoing scientific efforts have seen substantial advancements related to the fields of genetics and genomics, with the major breakthroughs yet to come. As genomics is the most rapidly advancing field in the life sciences, it is important to present a comprehensive overview of current efforts. Here, we present a summary of various genetic and genomics assays and approaches applied to coronary artery disease research.
Literature
1.
go back to reference Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst. 1998;90(2):93.PubMedCrossRef Kuska B. Beer, Bethesda, and biology: how “genomics” came into being. J Natl Cancer Inst. 1998;90(2):93.PubMedCrossRef
2.••
go back to reference Consortium, C.A.D. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30. This study provides a largest GWAS meta-analysis for the coronary artery disease including 60,801 cases and 123,504 controls from 48 individual GWAS studies.CrossRef Consortium, C.A.D. A comprehensive 1000 genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47(10):1121–30. This study provides a largest GWAS meta-analysis for the coronary artery disease including 60,801 cases and 123,504 controls from 48 individual GWAS studies.CrossRef
3.
go back to reference Consortium CAD et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33. Consortium CAD et al. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45(1):25–33.
4.
go back to reference Park DS et al. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses. Bioinformatics. 2015;31(12):i181–9.PubMedPubMedCentralCrossRef Park DS et al. Adapt-Mix: learning local genetic correlation structure improves summary statistics-based analyses. Bioinformatics. 2015;31(12):i181–9.PubMedPubMedCentralCrossRef
5.
go back to reference Gagliano SA et al. A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization. PLoS One. 2014;9(5):e98122.PubMedPubMedCentralCrossRef Gagliano SA et al. A Bayesian method to incorporate hundreds of functional characteristics with association evidence to improve variant prioritization. PLoS One. 2014;9(5):e98122.PubMedPubMedCentralCrossRef
7.
8.
go back to reference Farh KK et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–43.PubMedCrossRef Farh KK et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature. 2015;518(7539):337–43.PubMedCrossRef
9.
10.
go back to reference Trynka G et al. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex-trait loci. Am J Hum Genet. 2015;97(1):139–52.PubMedPubMedCentralCrossRef Trynka G et al. Disentangling the effects of colocalizing genomic annotations to functionally prioritize non-coding variants within complex-trait loci. Am J Hum Genet. 2015;97(1):139–52.PubMedPubMedCentralCrossRef
12.
13.
go back to reference Makinen VP et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10(7):e1004502.PubMedPubMedCentralCrossRef Makinen VP et al. Integrative genomics reveals novel molecular pathways and gene networks for coronary artery disease. PLoS Genet. 2014;10(7):e1004502.PubMedPubMedCentralCrossRef
14.
go back to reference Huan T et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33(6):1427–34.PubMedPubMedCentralCrossRef Huan T et al. A systems biology framework identifies molecular underpinnings of coronary heart disease. Arterioscler Thromb Vasc Biol. 2013;33(6):1427–34.PubMedPubMedCentralCrossRef
15.•
go back to reference Miller CL, Pjanic M, Quertermous T. From locus association to mechanism of gene causality: the devil is in the details. Arterioscler Thromb Vasc Biol. 2015;35(10):2079–80. This editorial provides a good overview of methods to identify causal variation and causal genes, and reviews a recent paper in the field.PubMedCrossRef Miller CL, Pjanic M, Quertermous T. From locus association to mechanism of gene causality: the devil is in the details. Arterioscler Thromb Vasc Biol. 2015;35(10):2079–80. This editorial provides a good overview of methods to identify causal variation and causal genes, and reviews a recent paper in the field.PubMedCrossRef
16.
go back to reference Kwon SM et al. Perspectives of integrative cancer genomics in next generation sequencing era. Genome Inform. 2012;10(2):69–73.CrossRef Kwon SM et al. Perspectives of integrative cancer genomics in next generation sequencing era. Genome Inform. 2012;10(2):69–73.CrossRef
17.
19.
go back to reference Trapnell C et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef Trapnell C et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.PubMedPubMedCentralCrossRef
21.
go back to reference Wang C et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32(9):926–32.PubMedPubMedCentralCrossRef Wang C et al. The concordance between RNA-seq and microarray data depends on chemical treatment and transcript abundance. Nat Biotechnol. 2014;32(9):926–32.PubMedPubMedCentralCrossRef
23.
25.
26.
27.
go back to reference Liu Y et al. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. Genomics. 2015;105(2):83–9.PubMedCrossRef Liu Y et al. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. Genomics. 2015;105(2):83–9.PubMedCrossRef
28.
go back to reference Ali SR et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 2014;115(7):625–35.PubMedCrossRef Ali SR et al. Developmental heterogeneity of cardiac fibroblasts does not predict pathological proliferation and activation. Circ Res. 2014;115(7):625–35.PubMedCrossRef
30.••
go back to reference Nurnberg ST et al. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 2015;11(5):e1005155. This study using multiple functional and in vivo assays demonstrates that the TCF21 gene, one of the lead CAD GWAS hits, is indeed causal for CAD.PubMedPubMedCentralCrossRef Nurnberg ST et al. Coronary artery disease associated transcription factor TCF21 regulates smooth muscle precursor cells that contribute to the fibrous cap. PLoS Genet. 2015;11(5):e1005155. This study using multiple functional and in vivo assays demonstrates that the TCF21 gene, one of the lead CAD GWAS hits, is indeed causal for CAD.PubMedPubMedCentralCrossRef
31.
go back to reference Bell RD et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34(6):1249–59.PubMedPubMedCentralCrossRef Bell RD et al. Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA. Arterioscler Thromb Vasc Biol. 2014;34(6):1249–59.PubMedPubMedCentralCrossRef
32.
go back to reference Gutierrez-Arcelus M et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2:e00523.PubMedPubMedCentral Gutierrez-Arcelus M et al. Passive and active DNA methylation and the interplay with genetic variation in gene regulation. Elife. 2013;2:e00523.PubMedPubMedCentral
34.
go back to reference Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.PubMedCrossRef Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene. 2002;21(35):5427–40.PubMedCrossRef
37.
go back to reference Sharma P et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27(7):357–65.PubMedCrossRef Sharma P et al. Detection of altered global DNA methylation in coronary artery disease patients. DNA Cell Biol. 2008;27(7):357–65.PubMedCrossRef
38.
go back to reference Dick KJ et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.PubMedCrossRef Dick KJ et al. DNA methylation and body-mass index: a genome-wide analysis. Lancet. 2014;383(9933):1990–8.PubMedCrossRef
39.
go back to reference Lamon-Fava S, Wilson PW, Schaefer EJ. Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1996;16(12):1509–15.PubMedCrossRef Lamon-Fava S, Wilson PW, Schaefer EJ. Impact of body mass index on coronary heart disease risk factors in men and women. The Framingham Offspring Study. Arterioscler Thromb Vasc Biol. 1996;16(12):1509–15.PubMedCrossRef
40.
go back to reference Putku M et al. CDH13 promoter SNPs with pleiotropic effect on cardiometabolic parameters represent methylation QTLs. Hum Genet. 2015;134(3):291–303.PubMedCrossRef Putku M et al. CDH13 promoter SNPs with pleiotropic effect on cardiometabolic parameters represent methylation QTLs. Hum Genet. 2015;134(3):291–303.PubMedCrossRef
41.
go back to reference Banovich NE et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 2014;10(9):e1004663.PubMedPubMedCentralCrossRef Banovich NE et al. Methylation QTLs are associated with coordinated changes in transcription factor binding, histone modifications, and gene expression levels. PLoS Genet. 2014;10(9):e1004663.PubMedPubMedCentralCrossRef
42.
go back to reference ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.CrossRef ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.CrossRef
46.
go back to reference del Rosario RC et al. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms. Nat Methods. 2015;12(5):458–64.PubMedCrossRef del Rosario RC et al. Sensitive detection of chromatin-altering polymorphisms reveals autoimmune disease mechanisms. Nat Methods. 2015;12(5):458–64.PubMedCrossRef
49.
go back to reference Miller CL et al. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet. 2013;9(7):e1003652.PubMedPubMedCentralCrossRef Miller CL et al. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet. 2013;9(7):e1003652.PubMedPubMedCentralCrossRef
50.
go back to reference Reschen ME et al. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet. 2015;11(4):e1005061.PubMedPubMedCentralCrossRef Reschen ME et al. Lipid-induced epigenomic changes in human macrophages identify a coronary artery disease-associated variant that regulates PPAP2B Expression through Altered C/EBP-beta binding. PLoS Genet. 2015;11(4):e1005061.PubMedPubMedCentralCrossRef
51.
go back to reference Creyghton MP et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.PubMedPubMedCentralCrossRef Creyghton MP et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A. 2010;107(50):21931–6.PubMedPubMedCentralCrossRef
53.
54.
go back to reference Crawford GE et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006;16(1):123–31.PubMedPubMedCentralCrossRef Crawford GE et al. Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res. 2006;16(1):123–31.PubMedPubMedCentralCrossRef
55.
go back to reference Schones DE et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132(5):887–98.PubMedCrossRef Schones DE et al. Dynamic regulation of nucleosome positioning in the human genome. Cell. 2008;132(5):887–98.PubMedCrossRef
57.••
go back to reference Buenrostro JD et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8. This study demonstrates the application of ATAC-Seq, a method for probing open chomatin regions, that dramatically reduces the number of cells needed for the experiment while preserving the resolution.PubMedPubMedCentralCrossRef Buenrostro JD et al. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods. 2013;10(12):1213–8. This study demonstrates the application of ATAC-Seq, a method for probing open chomatin regions, that dramatically reduces the number of cells needed for the experiment while preserving the resolution.PubMedPubMedCentralCrossRef
58.
go back to reference Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976;193(4256):848–56.PubMedCrossRef Weintraub H, Groudine M. Chromosomal subunits in active genes have an altered conformation. Science. 1976;193(4256):848–56.PubMedCrossRef
59.
go back to reference Enver T, Brewer AC, Patient RK. Simian virus 40-mediated cis induction of the Xenopus beta-globin DNase I hypersensitive site. Nature. 1985;318(6047):680–3.PubMedCrossRef Enver T, Brewer AC, Patient RK. Simian virus 40-mediated cis induction of the Xenopus beta-globin DNase I hypersensitive site. Nature. 1985;318(6047):680–3.PubMedCrossRef
61.
go back to reference Bell O et al. Determinants and dynamics of genome accessibility. Nat Rev Genet. 2011;12(8):554–64.PubMedCrossRef Bell O et al. Determinants and dynamics of genome accessibility. Nat Rev Genet. 2011;12(8):554–64.PubMedCrossRef
63.
go back to reference Sazonova O et al. Characterization of TCF21 downstream target regions identifies a transcriptional network linking multiple independent coronary artery disease loci. PLoS Genet. 2015;11(5):e1005202.PubMedPubMedCentralCrossRef Sazonova O et al. Characterization of TCF21 downstream target regions identifies a transcriptional network linking multiple independent coronary artery disease loci. PLoS Genet. 2015;11(5):e1005202.PubMedPubMedCentralCrossRef
64.
65.
go back to reference Schep AN et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015;25(11):1757–70.PubMedPubMedCentralCrossRef Schep AN et al. Structured nucleosome fingerprints enable high-resolution mapping of chromatin architecture within regulatory regions. Genome Res. 2015;25(11):1757–70.PubMedPubMedCentralCrossRef
67.
go back to reference Harismendy O et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470(7333):264–8.PubMedPubMedCentralCrossRef Harismendy O et al. 9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response. Nature. 2011;470(7333):264–8.PubMedPubMedCentralCrossRef
68.
go back to reference Davison LJ et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21(2):322–33.PubMedCrossRef Davison LJ et al. Long-range DNA looping and gene expression analyses identify DEXI as an autoimmune disease candidate gene. Hum Mol Genet. 2012;21(2):322–33.PubMedCrossRef
70.
go back to reference Belton JM et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58(3):268–76.PubMedCrossRef Belton JM et al. Hi-C: a comprehensive technique to capture the conformation of genomes. Methods. 2012;58(3):268–76.PubMedCrossRef
74.
go back to reference Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef Welcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007;447(7145):661–78.CrossRef
75.
go back to reference Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.PubMedCrossRef Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316(5830):1491–3.PubMedCrossRef
78.
go back to reference Helgadottir A et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.PubMedCrossRef Helgadottir A et al. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40(2):217–24.PubMedCrossRef
79.
go back to reference Congrains A et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449–55.PubMedCrossRef Congrains A et al. Genetic variants at the 9p21 locus contribute to atherosclerosis through modulation of ANRIL and CDKN2A/B. Atherosclerosis. 2012;220(2):449–55.PubMedCrossRef
80.
go back to reference Cunnington MS, Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus. Curr Atheroscler Rep. 2011;13(3):193–201.PubMedCrossRef Cunnington MS, Keavney B. Genetic mechanisms mediating atherosclerosis susceptibility at the chromosome 9p21 locus. Curr Atheroscler Rep. 2011;13(3):193–201.PubMedCrossRef
81.
go back to reference Folkersen L et al. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One. 2009;4(11):e7677.PubMedPubMedCentralCrossRef Folkersen L et al. Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants. PLoS One. 2009;4(11):e7677.PubMedPubMedCentralCrossRef
82.
83.
84.
go back to reference Motterle A et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21(18):4021–9.PubMedPubMedCentralCrossRef Motterle A et al. Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 2012;21(18):4021–9.PubMedPubMedCentralCrossRef
85.
go back to reference Holdt LM et al. Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque. Atherosclerosis. 2011;214(2):264–70.PubMedCrossRef Holdt LM et al. Expression of Chr9p21 genes CDKN2B (p15(INK4b)), CDKN2A (p16(INK4a), p14(ARF)) and MTAP in human atherosclerotic plaque. Atherosclerosis. 2011;214(2):264–70.PubMedCrossRef
86.
go back to reference Jarinova O et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29(10):1671–7.PubMedCrossRef Jarinova O et al. Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus. Arterioscler Thromb Vasc Biol. 2009;29(10):1671–7.PubMedCrossRef
87.
go back to reference Pilbrow AP et al. The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS One. 2012;7(6):e39574.PubMedPubMedCentralCrossRef Pilbrow AP et al. The chromosome 9p21.3 coronary heart disease risk allele is associated with altered gene expression in normal heart and vascular tissues. PLoS One. 2012;7(6):e39574.PubMedPubMedCentralCrossRef
89.
go back to reference Gonzalez-Navarro H et al. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol. 2010;55(20):2258–68.PubMedCrossRef Gonzalez-Navarro H et al. p19(ARF) deficiency reduces macrophage and vascular smooth muscle cell apoptosis and aggravates atherosclerosis. J Am Coll Cardiol. 2010;55(20):2258–68.PubMedCrossRef
90.
go back to reference Gizard F et al. PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest. 2005;115(11):3228–38.PubMedPubMedCentralCrossRef Gizard F et al. PPAR alpha inhibits vascular smooth muscle cell proliferation underlying intimal hyperplasia by inducing the tumor suppressor p16INK4a. J Clin Invest. 2005;115(11):3228–38.PubMedPubMedCentralCrossRef
91.
go back to reference Fuster JJ et al. Increased gene dosage of the Ink4/Arf locus does not attenuate atherosclerosis development in hypercholesterolaemic mice. Atherosclerosis. 2012;221(1):98–105.PubMedCrossRef Fuster JJ et al. Increased gene dosage of the Ink4/Arf locus does not attenuate atherosclerosis development in hypercholesterolaemic mice. Atherosclerosis. 2012;221(1):98–105.PubMedCrossRef
92.
go back to reference Wouters K et al. Bone marrow p16INK4a-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development. PLoS One. 2012;7(3):e32440.PubMedPubMedCentralCrossRef Wouters K et al. Bone marrow p16INK4a-deficiency does not modulate obesity, glucose homeostasis or atherosclerosis development. PLoS One. 2012;7(3):e32440.PubMedPubMedCentralCrossRef
93.
go back to reference Kuo CL et al. Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb Vasc Biol. 2011;31(11):2483–92.PubMedPubMedCentralCrossRef Kuo CL et al. Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb Vasc Biol. 2011;31(11):2483–92.PubMedPubMedCentralCrossRef
94.
go back to reference Leeper NJ et al. Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33(1):e1–10.PubMedCrossRef Leeper NJ et al. Loss of CDKN2B promotes p53-dependent smooth muscle cell apoptosis and aneurysm formation. Arterioscler Thromb Vasc Biol. 2013;33(1):e1–10.PubMedCrossRef
96.
97.
98.
go back to reference Miller CL et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 2014;10(3):e1004263.PubMedPubMedCentralCrossRef Miller CL et al. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet. 2014;10(3):e1004263.PubMedPubMedCentralCrossRef
99.
go back to reference Lu J, Richardson JA, Olson EN. Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev. 1998;73(1):23–32.PubMedCrossRef Lu J, Richardson JA, Olson EN. Capsulin: a novel bHLH transcription factor expressed in epicardial progenitors and mesenchyme of visceral organs. Mech Dev. 1998;73(1):23–32.PubMedCrossRef
100.
101.
go back to reference Acharya A et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139–49.PubMedPubMedCentralCrossRef Acharya A et al. The bHLH transcription factor Tcf21 is required for lineage-specific EMT of cardiac fibroblast progenitors. Development. 2012;139(12):2139–49.PubMedPubMedCentralCrossRef
102.
go back to reference Braitsch CM et al. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev Biol. 2012;368(2):345–57.PubMedPubMedCentralCrossRef Braitsch CM et al. Pod1/Tcf21 is regulated by retinoic acid signaling and inhibits differentiation of epicardium-derived cells into smooth muscle in the developing heart. Dev Biol. 2012;368(2):345–57.PubMedPubMedCentralCrossRef
106.
go back to reference Nagiec MM et al. Modulators of hepatic lipoprotein metabolism identified in a search for small-molecule inducers of tribbles pseudokinase 1 expression. PLoS One. 2015;10(3):e0120295.PubMedPubMedCentralCrossRef Nagiec MM et al. Modulators of hepatic lipoprotein metabolism identified in a search for small-molecule inducers of tribbles pseudokinase 1 expression. PLoS One. 2015;10(3):e0120295.PubMedPubMedCentralCrossRef
107.
go back to reference Beaudoin M et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler Thromb Vasc Biol. 2015;35(6):1472–9.PubMedPubMedCentralCrossRef Beaudoin M et al. Myocardial infarction-associated SNP at 6p24 interferes with MEF2 binding and associates with PHACTR1 expression levels in human coronary arteries. Arterioscler Thromb Vasc Biol. 2015;35(6):1472–9.PubMedPubMedCentralCrossRef
109.
Metadata
Title
Genetics and Genomics of Coronary Artery Disease
Authors
Milos Pjanic
Clint L. Miller
Robert Wirka
Juyong B. Kim
Daniel M. DiRenzo
Thomas Quertermous
Publication date
01-10-2016
Publisher
Springer US
Published in
Current Cardiology Reports / Issue 10/2016
Print ISSN: 1523-3782
Electronic ISSN: 1534-3170
DOI
https://doi.org/10.1007/s11886-016-0777-y

Other articles of this Issue 10/2016

Current Cardiology Reports 10/2016 Go to the issue

Hypertension (AJ Peixoto and DS Geller, Section Editors)

BP Targets in Hypertension: What Should We Do Now That SPRINT Is Out?

Psychological Aspects of Cardiovascular Diseases (A Steptoe, Section Editor)

Psychosocial Factors in Diabetes and Cardiovascular Risk

Psychological Aspects of Cardiovascular Diseases (A Steptoe, Section Editor)

Post-traumatic Stress Disorder and Cardiovascular Disease

Valvular Heart Disease (A Wang, Section Editor)

Rheumatic Heart Disease in the Twenty-First Century