Skip to main content
Top
Published in: Journal of Assisted Reproduction and Genetics 11/2018

01-11-2018 | Review

Genetic evaluation of patients with non-syndromic male infertility

Authors: Ozlem Okutman, Maroua Ben Rhouma, Moncef Benkhalifa, Jean Muller, Stéphane Viville

Published in: Journal of Assisted Reproduction and Genetics | Issue 11/2018

Login to get access

Abstract

Purpose

This review provides an update on the genetics of male infertility with emphasis on the current state of research, the genetic disorders that can lead to non-syndromic male infertility, and the genetic tests available for patients.

Methods

A comprehensive review of the scientific literature referenced in PubMed was conducted using keywords related to male infertility and genetics. The search included articles with English abstracts appearing online after 2000.

Results

Mutations in 31 distinct genes have been identified as a cause of non-syndromic human male infertility, and the number is increasing constantly. Screening gene panels by high-throughput sequencing can be offered to patients in order to identify genes involved in various forms of human non-syndromic infertility. We propose a workflow for genetic tests which takes into account semen alterations.

Conclusions

The identification and characterization of the genetic basis of male infertility have broad implications not only for understanding the cause of infertility but also in determining the prognosis, selection of treatment options, and management of couples. Genetic diagnosis is essential for the success of ART techniques and for preserving future fertility as well as the prognosis for testicular sperm extraction (TESE) and adopted therapeutics.
Literature
1.
go back to reference Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology. Hum Reprod. 2009;24:2683–7.CrossRef Zegers-Hochschild F, Adamson GD, de Mouzon J, Ishihara O, Mansour R, Nygren K, et al. The International Committee for Monitoring Assisted Reproductive Technology (ICMART) and the World Health Organization (WHO) Revised Glossary on ART Terminology. Hum Reprod. 2009;24:2683–7.CrossRef
2.
go back to reference Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.CrossRef Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.CrossRef
3.
go back to reference Dimitriadis F, Adonakis G, Kaponis A, Mamoulakis C, Takenaka A, Sofikitis N. Pre-testicular, testicular, and post-testicular causes of male infertility. In: Simoni M, Huhtaniemi I, editors. Endocrinology of the testis and male reproduction. Endocrinology. Cham: Springer; 2017. Dimitriadis F, Adonakis G, Kaponis A, Mamoulakis C, Takenaka A, Sofikitis N. Pre-testicular, testicular, and post-testicular causes of male infertility. In: Simoni M, Huhtaniemi I, editors. Endocrinology of the testis and male reproduction. Endocrinology. Cham: Springer; 2017.
4.
go back to reference Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66.CrossRef Sharma R, Biedenharn KR, Fedor JM, Agarwal A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod Biol Endocrinol. 2013;11:66.CrossRef
5.
go back to reference Chianese C, Gunning AC, Giachini C, Daguin F, Balercia G, Ars E, et al. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One. 2014;9:e97746.CrossRef Chianese C, Gunning AC, Giachini C, Daguin F, Balercia G, Ars E, et al. X chromosome-linked CNVs in male infertility: discovery of overall duplication load and recurrent, patient-specific gains with potential clinical relevance. PLoS One. 2014;9:e97746.CrossRef
6.
go back to reference Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25:271–85.CrossRef Krausz C. Male infertility: pathogenesis and clinical diagnosis. Best Pract Res Clin Endocrinol Metab. 2011;25:271–85.CrossRef
7.
go back to reference Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34:119–24.CrossRef Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34:119–24.CrossRef
8.
go back to reference Harper J, Geraedts J, Borry P, Cornel MC, Dondorp WJ, Gianaroli L, et al. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. Hum Reprod (Oxf Engl). 2014;29:1603–9.CrossRef Harper J, Geraedts J, Borry P, Cornel MC, Dondorp WJ, Gianaroli L, et al. Current issues in medically assisted reproduction and genetics in Europe: research, clinical practice, ethics, legal issues and policy. Hum Reprod (Oxf Engl). 2014;29:1603–9.CrossRef
9.
go back to reference Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, et al. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.CrossRef Harper JC, Aittomäki K, Borry P, Cornel MC, de Wert G, Dondorp W, et al. Recent developments in genetics and medically assisted reproduction: from research to clinical applications. Eur J Hum Genet. 2018;26:12–33.CrossRef
11.
go back to reference Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. PNAS. 2003;100(21):12201–6.CrossRef Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. PNAS. 2003;100(21):12201–6.CrossRef
12.
go back to reference Bobadilla JL, Macek M, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.CrossRef Bobadilla JL, Macek M, Fine JP, Farrell PM. Cystic fibrosis: a worldwide analysis of CFTR mutations correlation with incidence data and application to screening. Hum Mutat. 2002;19:575–606.CrossRef
13.
go back to reference Thauvin-Robinet C, Munck A, Huet F, Becdelièvre A, de Jimenez C, Lalau G, et al. CFTR p.Arg117His associated with CBAVD and other CFTR-related disorders. J Med Genet. 2013;50:220–7.CrossRef Thauvin-Robinet C, Munck A, Huet F, Becdelièvre A, de Jimenez C, Lalau G, et al. CFTR p.Arg117His associated with CBAVD and other CFTR-related disorders. J Med Genet. 2013;50:220–7.CrossRef
14.
go back to reference Patat O, Pagin A, Siegfried A, Mitchell V, Chassaing N, Faguer S, et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an x-linked congenital bilateral absence of vas deferens. Am J Hum Genet. 2016;99(2):437–42.CrossRef Patat O, Pagin A, Siegfried A, Mitchell V, Chassaing N, Faguer S, et al. Truncating mutations in the adhesion G protein-coupled receptor G2 gene ADGRG2 cause an x-linked congenital bilateral absence of vas deferens. Am J Hum Genet. 2016;99(2):437–42.CrossRef
15.
go back to reference Mierla D, Jardan D, Stoian V. Chromosomal abnormality in men with impaired spermatogenesis. Int J Fertil Steril. 2014;8:35–42.PubMedPubMedCentral Mierla D, Jardan D, Stoian V. Chromosomal abnormality in men with impaired spermatogenesis. Int J Fertil Steril. 2014;8:35–42.PubMedPubMedCentral
16.
go back to reference Ravel C, Berthaut I, Bresson JL, Siffroi JP, Genetics Commission of the French Federation of CECOS. Prevalence of chromosomal abnormalities in phenotypically normal and fertile adult males: large-scale survey of over 10,000 sperm donor karyotypes. Hum Reprod. 2006;21:1484–9.CrossRef Ravel C, Berthaut I, Bresson JL, Siffroi JP, Genetics Commission of the French Federation of CECOS. Prevalence of chromosomal abnormalities in phenotypically normal and fertile adult males: large-scale survey of over 10,000 sperm donor karyotypes. Hum Reprod. 2006;21:1484–9.CrossRef
17.
go back to reference Răchian L, Niculae AS, Tintea I, Pop B, Militaru MS, Bizo A, et al. Association of fragile X syndrome, Robertsonian translocation (13, 22) and autism in a child. Clujul Medical. 2017;90:445–8.CrossRef Răchian L, Niculae AS, Tintea I, Pop B, Militaru MS, Bizo A, et al. Association of fragile X syndrome, Robertsonian translocation (13, 22) and autism in a child. Clujul Medical. 2017;90:445–8.CrossRef
18.
go back to reference Jeong S, Kim BY, Yu JE. De novo pericentric inversion of chromosome 9 in congenital anomaly. Yonsei Med J. 2010;51:775–80.CrossRef Jeong S, Kim BY, Yu JE. De novo pericentric inversion of chromosome 9 in congenital anomaly. Yonsei Med J. 2010;51:775–80.CrossRef
19.
go back to reference Rives N, Joly G, Machy A, Siméon N, Leclerc P, Macé B. Assessment of sex chromosome aneuploidy in sperm nuclei from 47,XXY and 46,XY/47,XXY males: comparison with fertile and infertile males with normal karyotype. Mol Hum Reprod. 2000;6:107–12.CrossRef Rives N, Joly G, Machy A, Siméon N, Leclerc P, Macé B. Assessment of sex chromosome aneuploidy in sperm nuclei from 47,XXY and 46,XY/47,XXY males: comparison with fertile and infertile males with normal karyotype. Mol Hum Reprod. 2000;6:107–12.CrossRef
20.
go back to reference Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27:124–36.CrossRef Walsh TJ, Pera RR, Turek PJ. The genetics of male infertility. Semin Reprod Med. 2009;27:124–36.CrossRef
21.
go back to reference Plotton I, Brosse A, Cuzin B, Lejeune H. Klinefelter syndrome and TESE-ICSI. Ann Endocrinol. 2014;75:118–25.CrossRef Plotton I, Brosse A, Cuzin B, Lejeune H. Klinefelter syndrome and TESE-ICSI. Ann Endocrinol. 2014;75:118–25.CrossRef
22.
go back to reference Tachdjian G, Frydman N, Morichon-Delvallez N, Le Dû A, Fanchin R, Vekemans M, et al. Reproductive genetic counselling in non-mosaic 47,XXY patients: implications for preimplantation or prenatal diagnosis: case report and review. Hum Reprod. 2003;18(2):271–5.CrossRef Tachdjian G, Frydman N, Morichon-Delvallez N, Le Dû A, Fanchin R, Vekemans M, et al. Reproductive genetic counselling in non-mosaic 47,XXY patients: implications for preimplantation or prenatal diagnosis: case report and review. Hum Reprod. 2003;18(2):271–5.CrossRef
23.
go back to reference Greco E, Scarselli F, Minasi MG, Casciani V, Zavaglia D, Dente D, et al. Birth of 16 healthy children after ICSI in cases of nonmosaic Klinefelter syndrome. Hum Reprod. 2013;28:1155–60.CrossRef Greco E, Scarselli F, Minasi MG, Casciani V, Zavaglia D, Dente D, et al. Birth of 16 healthy children after ICSI in cases of nonmosaic Klinefelter syndrome. Hum Reprod. 2013;28:1155–60.CrossRef
24.
go back to reference Lele P, Dey M, Ptil D, Sharma R. Genetics and male infertility. WJPR. 2015;4(5):644–55. Lele P, Dey M, Ptil D, Sharma R. Genetics and male infertility. WJPR. 2015;4(5):644–55.
25.
go back to reference Ma S, Ho Yuen B, Penaherrera M, Koehn D, Ness L, Robinson W. ICSI and the transmission of X-autosomal translocation: a three-generation evaluation of X; 20 translocation: case report. Hum Reprod. 2003;18:1377–82.CrossRef Ma S, Ho Yuen B, Penaherrera M, Koehn D, Ness L, Robinson W. ICSI and the transmission of X-autosomal translocation: a three-generation evaluation of X; 20 translocation: case report. Hum Reprod. 2003;18:1377–82.CrossRef
26.
go back to reference Vozdova M, Oracova E, Kasikova K, Prinosilova P, Rybar R, Horinova V, et al. Balanced chromosomal translocations in men: relationships among semen parameters, chromatin integrity, sperm meiotic segregation and aneuploidy. J Assist Reprod Genet. 2013;30:391–405.CrossRef Vozdova M, Oracova E, Kasikova K, Prinosilova P, Rybar R, Horinova V, et al. Balanced chromosomal translocations in men: relationships among semen parameters, chromatin integrity, sperm meiotic segregation and aneuploidy. J Assist Reprod Genet. 2013;30:391–405.CrossRef
27.
go back to reference Benet J, Oliver-Bonet M, Cifuentes P, Templado C, Navarro J. Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet Genome Res. 2005;111:281–90.CrossRef Benet J, Oliver-Bonet M, Cifuentes P, Templado C, Navarro J. Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet Genome Res. 2005;111:281–90.CrossRef
28.
go back to reference Morel F, Douet-Guilbert N, Le Bris MJ, Herry A, Amice V, Amice J, et al. Meiotic segregation of translocations during male gametogenesis. Int J Androl. 2004;27:200–12.CrossRef Morel F, Douet-Guilbert N, Le Bris MJ, Herry A, Amice V, Amice J, et al. Meiotic segregation of translocations during male gametogenesis. Int J Androl. 2004;27:200–12.CrossRef
29.
go back to reference Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.CrossRef Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.CrossRef
30.
go back to reference Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod BioMed Online. 2007;14:734–45.CrossRef Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod BioMed Online. 2007;14:734–45.CrossRef
31.
go back to reference Longepied G, Saut N, Aknin-Seifer I, Levy R, Frances AM, Metzler-Guillemain C, et al. Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man. Hum Reprod. 2010;25:2655–63.CrossRef Longepied G, Saut N, Aknin-Seifer I, Levy R, Frances AM, Metzler-Guillemain C, et al. Complete deletion of the AZFb interval from the Y chromosome in an oligozoospermic man. Hum Reprod. 2010;25:2655–63.CrossRef
32.
go back to reference Kleiman SE, Yogev L, Lehavi O, Hauser R, Botchan A, Paz G, et al. The likelihood of finding mature sperm cells in men with AZFb or AZFb-c deletions: six new cases and a review of the literature (1994–2010). Fertil Steril. 2011;95:2005–12. 2012.e1–4.CrossRef Kleiman SE, Yogev L, Lehavi O, Hauser R, Botchan A, Paz G, et al. The likelihood of finding mature sperm cells in men with AZFb or AZFb-c deletions: six new cases and a review of the literature (1994–2010). Fertil Steril. 2011;95:2005–12. 2012.e1–4.CrossRef
33.
go back to reference Soares AR, Costa P, Silva J, Sousa M, Barros A, Fernandes S. AZFb microdeletions and oligozoospermia–which mechanisms? Fertil Steril. 2012;97:858–63.CrossRef Soares AR, Costa P, Silva J, Sousa M, Barros A, Fernandes S. AZFb microdeletions and oligozoospermia–which mechanisms? Fertil Steril. 2012;97:858–63.CrossRef
34.
go back to reference Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysisWhat is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod. 2000;15:1431–4.CrossRef Krausz C, Quintana-Murci L, McElreavey K. Prognostic value of Y deletion analysisWhat is the clinical prognostic value of Y chromosome microdeletion analysis? Hum Reprod. 2000;15:1431–4.CrossRef
35.
go back to reference Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7:1198–210.CrossRef Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7:1198–210.CrossRef
36.
go back to reference Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097–107.CrossRef Yatsenko AN, Georgiadis AP, Röpke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097–107.CrossRef
37.
go back to reference Karampetsou E, Morrogh D, Chitty L. Microarray technology for the diagnosis of fetal chromosomal aberrations: which platform should we use? J Clin Med. 2014;3:663–78.CrossRef Karampetsou E, Morrogh D, Chitty L. Microarray technology for the diagnosis of fetal chromosomal aberrations: which platform should we use? J Clin Med. 2014;3:663–78.CrossRef
38.
go back to reference Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. What can exome sequencing do for you? J Med Genet. 2011;48:580–9.CrossRef Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N. What can exome sequencing do for you? J Med Genet. 2011;48:580–9.CrossRef
39.
go back to reference Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39:661–5.CrossRef Dieterich K, Soto Rifo R, Faure AK, Hennebicq S, Ben Amar B, Zahi M, et al. Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nat Genet. 2007;39:661–5.CrossRef
40.
go back to reference Elinati E, Kuentz P, Redin C, Jaber S, Vanden Meerschaut F, Makarian J, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21:3695–702.CrossRef Elinati E, Kuentz P, Redin C, Jaber S, Vanden Meerschaut F, Makarian J, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21:3695–702.CrossRef
41.
go back to reference Ghédir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.CrossRef Ghédir H, Ibala-Romdhane S, Okutman O, Viot G, Saad A, Viville S. Identification of a new DPY19L2 mutation and a better definition of DPY19L2 deletion breakpoints leading to globozoospermia. Mol Hum Reprod. 2016;22:35–45.CrossRef
42.
go back to reference Koscinski I, ElInati E, Fossard C, Redin C, Muller J, Velez de la Calle J, et al. DPY19L2 deletion as a major cause of Globozoospermia. Am J Hum Genet. 2011;88:344–50.CrossRef Koscinski I, ElInati E, Fossard C, Redin C, Muller J, Velez de la Calle J, et al. DPY19L2 deletion as a major cause of Globozoospermia. Am J Hum Genet. 2011;88:344–50.CrossRef
43.
go back to reference Mou L, Xie N, Yang L, Liu Y, Diao R, Cai Z, et al. A novel mutation of DAX-1 associated with secretory azoospermia. PLoS One. 2015;10:e0133997.CrossRef Mou L, Xie N, Yang L, Liu Y, Diao R, Cai Z, et al. A novel mutation of DAX-1 associated with secretory azoospermia. PLoS One. 2015;10:e0133997.CrossRef
44.
go back to reference Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8.CrossRef Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24:5581–8.CrossRef
45.
go back to reference Okutman O, Muller J, Skory V, Garnier JM, Gaucherot A, Baert Y, et al. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J Assist Reprod Genet. 2017:1–12. Okutman O, Muller J, Skory V, Garnier JM, Gaucherot A, Baert Y, et al. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J Assist Reprod Genet. 2017:1–12.
46.
go back to reference Ayhan Ö, Balkan M, Guven A, Hazan R, Atar M, Tok A, et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet. 2014;51:239–44.CrossRef Ayhan Ö, Balkan M, Guven A, Hazan R, Atar M, Tok A, et al. Truncating mutations in TAF4B and ZMYND15 causing recessive azoospermia. J Med Genet. 2014;51:239–44.CrossRef
47.
go back to reference Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, et al. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet. 2013;132:159–65.CrossRef Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, et al. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet. 2013;132:159–65.CrossRef
48.
go back to reference Yatseenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15:3411–9.CrossRef Yatseenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, et al. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15:3411–9.CrossRef
49.
go back to reference Gershoni M, Hauser R, Yogev L, Lehavi O, Azem F, Yavetz H, et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19:998–1006.CrossRef Gershoni M, Hauser R, Yogev L, Lehavi O, Azem F, Yavetz H, et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19:998–1006.CrossRef
50.
go back to reference Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, et al. Ubiquitination-deficient mutations in human piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 2017;169:1090–1104.e13.CrossRef Gou LT, Kang JY, Dai P, Wang X, Li F, Zhao S, et al. Ubiquitination-deficient mutations in human piwi cause male infertility by impairing histone-to-protamine exchange during spermiogenesis. Cell. 2017;169:1090–1104.e13.CrossRef
51.
go back to reference Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G, Vargas AS, et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med. 2017;9(8):1132–49.CrossRef Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G, Vargas AS, et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med. 2017;9(8):1132–49.CrossRef
52.
go back to reference Choi Y, Jeon S, Choi M, Lee M, Park M, Lee DR, et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat. 2010;31:788–93.CrossRef Choi Y, Jeon S, Choi M, Lee M, Park M, Lee DR, et al. Mutations in SOHLH1 gene associate with nonobstructive azoospermia. Hum Mutat. 2010;31:788–93.CrossRef
53.
go back to reference Ramasamy R, Bakırcıoğlu ME, Cengiz C, Karaca E, Scovell J, Jhangiani SN, et al. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia. Fertil Steril. 2015;104:286–91.CrossRef Ramasamy R, Bakırcıoğlu ME, Cengiz C, Karaca E, Scovell J, Jhangiani SN, et al. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia. Fertil Steril. 2015;104:286–91.CrossRef
54.
go back to reference Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54:633–9.CrossRef Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54:633–9.CrossRef
55.
go back to reference Kusz-Zamelczyk K, Sajek M, Spik A, Glazar R, Jędrzejczak P, Latos-Bieleńska A, et al. Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet. 2013;50:187–93.CrossRef Kusz-Zamelczyk K, Sajek M, Spik A, Glazar R, Jędrzejczak P, Latos-Bieleńska A, et al. Mutations of NANOS1, a human homologue of the Drosophila morphogen, are associated with a lack of germ cells in testes or severe oligo-astheno-teratozoospermia. J Med Genet. 2013;50:187–93.CrossRef
56.
go back to reference Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24.CrossRef Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the association for molecular pathology. Genet Med. 2015;17(5):405–24.CrossRef
57.
go back to reference Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet. 2015;8. Karki R, Pandya D, Elston RC, Ferlini C. Defining “mutation” and “polymorphism” in the era of personal genomics. BMC Med Genet. 2015;8.
58.
go back to reference Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. AJHG. 2007;81:813–20.CrossRef Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. AJHG. 2007;81:813–20.CrossRef
59.
go back to reference Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94:95–104.CrossRef Ben Khelifa M, Coutton C, Zouari R, Karaouzène T, Rendu J, Bidart M, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94:95–104.CrossRef
60.
go back to reference Kuo PL, Chiang HS, Wang YY, Kuo YC, Chen MF, Yu IS, et al. SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci. 2013;14:22102–16.CrossRef Kuo PL, Chiang HS, Wang YY, Kuo YC, Chen MF, Yu IS, et al. SEPT12-microtubule complexes are required for sperm head and tail formation. Int J Mol Sci. 2013;14:22102–16.CrossRef
61.
go back to reference Tang S, Wang X, Li W, Yang X, Li Z, Liu W, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854–64.CrossRef Tang S, Wang X, Li W, Yang X, Li Z, Liu W, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100:854–64.CrossRef
62.
go back to reference Li L, Sha Y, Wang X, Li P, Wang J, Kee K, et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget. 2017;8:19914–22.PubMedPubMedCentral Li L, Sha Y, Wang X, Li P, Wang J, Kee K, et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget. 2017;8:19914–22.PubMedPubMedCentral
63.
go back to reference Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99:942–9.CrossRef Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99:942–9.CrossRef
64.
go back to reference Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.CrossRef Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84:505–10.CrossRef
65.
go back to reference Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 2014;111:1120–5.CrossRef Takasaki N, Tachibana K, Ogasawara S, Matsuzaki H, Hagiuda J, Ishikawa H, et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc Natl Acad Sci U S A. 2014;111:1120–5.CrossRef
66.
go back to reference Dirami T, Rode B, Jollivet M, Da Silva N, Escalier D, Gaitch N, et al. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet. 2013;92:760–6.CrossRef Dirami T, Rode B, Jollivet M, Da Silva N, Escalier D, Gaitch N, et al. Missense mutations in SLC26A8, encoding a sperm-specific activator of CFTR, are associated with human asthenozoospermia. Am J Hum Genet. 2013;92:760–6.CrossRef
68.
go back to reference Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzène T, et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91.CrossRef Escoffier J, Lee HC, Yassine S, Zouari R, Martinez G, Karaouzène T, et al. Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Hum Mol Genet. 2016;25:878–91.CrossRef
69.
go back to reference Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod (Oxf Engl). 2012;27:25–35.CrossRef Yu J, Chen Z, Ni Y, Li Z. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod (Oxf Engl). 2012;27:25–35.CrossRef
70.
go back to reference Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91:217–32.CrossRef Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91:217–32.CrossRef
71.
go back to reference Ben Khelifa M, Coutton C, Blum MGB, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod (Oxf Engl). 2012;27:3337–46.CrossRef Ben Khelifa M, Coutton C, Blum MGB, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod (Oxf Engl). 2012;27:3337–46.CrossRef
72.
go back to reference ElInati E, Fossard C, Okutman O, Ghédir H, Ibala-Romdhane S, Ray PF, et al. A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet. 2016;33:815–20.CrossRef ElInati E, Fossard C, Okutman O, Ghédir H, Ibala-Romdhane S, Ray PF, et al. A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet. 2016;33:815–20.CrossRef
73.
go back to reference Kuentz P, Vanden Meerschaut F, Elinati E, Nasr-Esfahani MH, Gurgan T, Iqbal N, et al. Assisted oocyte activation overcomes fertilization failure in globozoospermic patients regardless of the DPY19L2 status. Hum Reprod (Oxf Engl). 2013;28:1054–61.CrossRef Kuentz P, Vanden Meerschaut F, Elinati E, Nasr-Esfahani MH, Gurgan T, Iqbal N, et al. Assisted oocyte activation overcomes fertilization failure in globozoospermic patients regardless of the DPY19L2 status. Hum Reprod (Oxf Engl). 2013;28:1054–61.CrossRef
Metadata
Title
Genetic evaluation of patients with non-syndromic male infertility
Authors
Ozlem Okutman
Maroua Ben Rhouma
Moncef Benkhalifa
Jean Muller
Stéphane Viville
Publication date
01-11-2018
Publisher
Springer US
Published in
Journal of Assisted Reproduction and Genetics / Issue 11/2018
Print ISSN: 1058-0468
Electronic ISSN: 1573-7330
DOI
https://doi.org/10.1007/s10815-018-1301-7

Other articles of this Issue 11/2018

Journal of Assisted Reproduction and Genetics 11/2018 Go to the issue