Skip to main content
Top
Published in: Journal of Neurology 9/2013

01-09-2013 | Original Communication

Genetic association of sirtuin genes and Parkinson’s disease

Authors: Silvia Jesús, Pilar Gómez-Garre, Fátima Carrillo, María T. Cáceres-Redondo, Ismael Huertas-Fernández, Inmaculada Bernal-Bernal, Marta Bonilla-Toribio, Laura Vargas-González, Manuel Carballo, Pablo Mir

Published in: Journal of Neurology | Issue 9/2013

Login to get access

Abstract

Parkinson’s disease (PD) is a neurodegenerative disease caused by both genetic and environmental factors. Sirtuins are highly-conserved, NAD-dependent class III deacetylases that regulate a variety of cellular functions. Most of the known sirtuins have been involved in animal models of neurodegenerative disorders, such as PD. Although seven sirtuin family members have been identified (SIRT1–SIRT7) the relationship between sirtuins and PD in humans has not been established. Our aim was to investigate the association between sirtuin genes and risk of PD. We included 326 PD patients and 371 controls from southern Spain. Forty-one single nucleotide polymorphisms (SNPs) in sirtuin genes were genotyped in order to determine whether they were related to the risk of PD. These SNPs included Tag-SNPs, coding non-synonymous SNPs and SNPs affecting activity of microRNA binding sites. No relationship was found between these SNPs in sirtuin genes and PD. Our data indicate that variations in sirtuin genes do not affect the risk for PD, at least in our population.
Literature
1.
go back to reference Puschman A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19:407–415CrossRef Puschman A (2013) Monogenic Parkinson’s disease and parkinsonism: clinical phenotypes and frequencies of known mutations. Parkinsonism Relat Disord 19:407–415CrossRef
2.
go back to reference Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406PubMedCrossRef Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C et al (2011) Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet 89:398–406PubMedCrossRef
3.
go back to reference Deng H, Gao K, Jankovic J (2013) The VPS35 gene and Parkinson’s disease. Mov Disord 28(5):569–575PubMedCrossRef Deng H, Gao K, Jankovic J (2013) The VPS35 gene and Parkinson’s disease. Mov Disord 28(5):569–575PubMedCrossRef
4.
go back to reference Dali-Youcet N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the “magnificent seven”, function, metabolism and longevity. Ann Med 39:335–345CrossRef Dali-Youcet N, Lagouge M, Froelich S, Koehl C, Schoonjans K, Auwerx J (2007) Sirtuins: the “magnificent seven”, function, metabolism and longevity. Ann Med 39:335–345CrossRef
5.
go back to reference Mine JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat disease of aging. Curr Opin Chem Biol 12:11–17CrossRef Mine JC, Denu JM (2008) The Sirtuin family: therapeutic targets to treat disease of aging. Curr Opin Chem Biol 12:11–17CrossRef
6.
go back to reference Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179PubMedCrossRef Kim D, Nguyen MD, Dobbin MM et al (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer’s disease and amyotrophic lateral sclerosis. EMBO J 26:3169–3179PubMedCrossRef
7.
go back to reference Jiang M, Wang J, Fu J et al (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158PubMedCrossRef Jiang M, Wang J, Fu J et al (2011) Neuroprotective role of Sirt1 in mammalian models of Huntington’s disease through activation of multiple Sirt1 targets. Nat Med 18:153–158PubMedCrossRef
8.
go back to reference Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against a-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132PubMedCrossRef Donmez G, Arun A, Chung CY, McLean PJ, Lindquist S, Guarente L (2012) SIRT1 protects against a-synuclein aggregation by activating molecular chaperones. J Neurosci 32:124–132PubMedCrossRef
9.
go back to reference Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1a and PGC-1b regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385PubMedCrossRef Wareski P, Vaarmann A, Choubey V et al (2009) PGC-1a and PGC-1b regulate mitochondrial density in neurons. J Biol Chem 284:21379–21385PubMedCrossRef
10.
go back to reference Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against cocconi2908 by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRef Lagouge M, Argmann C, Gerhart-Hines Z et al (2006) Resveratrol improves mitochondrial function and protects against cocconi2908 by activating SIRT1 and PGC-1alpha. Cell 127:1109–1122PubMedCrossRef
11.
go back to reference Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002PubMedCrossRef Della-Morte D, Dave KR, DeFazio RA, Bao YC, Raval AP, Perez-Pinzon MA (2009) Resveratrol pretreatment protects rat brain from cerebral ischemic damage via a sirtuin 1-uncoupling protein 2 pathway. Neuroscience 159:993–1002PubMedCrossRef
12.
go back to reference Outeiro TF, Kontopoulos E, Altmann SM et al (2007) Sirtuin 2 inhibitors rescue a-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519PubMedCrossRef Outeiro TF, Kontopoulos E, Altmann SM et al (2007) Sirtuin 2 inhibitors rescue a-synuclein-mediated toxicity in models of Parkinson’s disease. Science 317:516–519PubMedCrossRef
13.
go back to reference Liu L, Arun A, Peritore C, Donmez G (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP)-induced nigroestriatal damage via deacetylating forehead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287:32307–32311PubMedCrossRef Liu L, Arun A, Peritore C, Donmez G (2012) Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahidropyridine (MPTP)-induced nigroestriatal damage via deacetylating forehead box O3a (Foxo3a) and activating Bim protein. J Biol Chem 287:32307–32311PubMedCrossRef
14.
go back to reference Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation. Nature 582:543–548 Hirschey MD, Shimazu T, Goetzman E et al (2010) SIRT3 regulates fatty acid oxidation via reversible enzyme deacetylation. Nature 582:543–548
15.
go back to reference Kanfi Y, Shalman R, Peshtia V, Pilosofa SN, Gozlana YM, Pearsonb KJ, Lerrera B, Moazedc D, Marined J-C, Cabob R, Cohena H (2008) Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 582:543–548PubMedCrossRef Kanfi Y, Shalman R, Peshtia V, Pilosofa SN, Gozlana YM, Pearsonb KJ, Lerrera B, Moazedc D, Marined J-C, Cabob R, Cohena H (2008) Regulation of SIRT6 protein levels by nutrient availability. FEBS Lett 582:543–548PubMedCrossRef
16.
go back to reference Raghavan A, Shah ZA (2011) Sirtuins in neurodegenerative diseases: a biological–chemical perspective. Neurodegener Dis 9:1–10PubMedCrossRef Raghavan A, Shah ZA (2011) Sirtuins in neurodegenerative diseases: a biological–chemical perspective. Neurodegener Dis 9:1–10PubMedCrossRef
17.
go back to reference Brown K, Xie S, Qiu X et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3:319–327PubMedCrossRef Brown K, Xie S, Qiu X et al (2013) SIRT3 reverses aging-associated degeneration. Cell Rep 3:319–327PubMedCrossRef
18.
go back to reference Kanfi Y, Naiman S, Amir G et al (2012) Sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221PubMedCrossRef Kanfi Y, Naiman S, Amir G et al (2012) Sirtuin SIRT6 regulates lifespan in male mice. Nature 483:218–221PubMedCrossRef
19.
go back to reference Glorioso C, Sunghee O, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiol Dis 41:279–290PubMedCrossRef Glorioso C, Sunghee O, Douillard GG, Sibille E (2011) Brain molecular aging, promotion of neurological disease and modulation by Sirtuin5 longevity gene polymorphism. Neurobiol Dis 41:279–290PubMedCrossRef
20.
go back to reference Barber M, Michishita-Kioi E, Xi Y et al (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118PubMed Barber M, Michishita-Kioi E, Xi Y et al (2012) SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487:114–118PubMed
21.
go back to reference Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752PubMedCrossRef Gibb WR, Lees AJ (1988) The relevance of the Lewy body to the pathogenesis of idiopathic Parkinson’s disease. J Neurol Neurosurg Psychiatry 51:745–752PubMedCrossRef
22.
go back to reference Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRef Purcell S, Neale B, Todd-Brown K et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575PubMedCrossRef
23.
go back to reference Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 422:693–696PubMedCrossRef Zhang A, Wang H, Qin X, Pang S, Yan B (2012) Genetic analysis of SIRT1 gene promoter in sporadic Parkinson’s disease. Biochem Biophys Res Commun 422:693–696PubMedCrossRef
24.
go back to reference Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799PubMedCrossRef Cheng HL, Mostoslavsky R, Saito S, Manis JP, Gu Y, Patel P, Bronson R, Appella E, Alt FW, Chua KF (2003) Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice. Proc Natl Acad Sci USA 100:10794–10799PubMedCrossRef
Metadata
Title
Genetic association of sirtuin genes and Parkinson’s disease
Authors
Silvia Jesús
Pilar Gómez-Garre
Fátima Carrillo
María T. Cáceres-Redondo
Ismael Huertas-Fernández
Inmaculada Bernal-Bernal
Marta Bonilla-Toribio
Laura Vargas-González
Manuel Carballo
Pablo Mir
Publication date
01-09-2013
Publisher
Springer Berlin Heidelberg
Published in
Journal of Neurology / Issue 9/2013
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-013-6970-7

Other articles of this Issue 9/2013

Journal of Neurology 9/2013 Go to the issue