Skip to main content
Top
Published in: Immunologic Research 1-3/2012

01-12-2012 | Immunology at Mount Sinai

Genetic and epigenetic mechanisms in thyroid autoimmunity

Authors: Alia Hasham, Yaron Tomer

Published in: Immunologic Research | Issue 1-3/2012

Login to get access

Abstract

Autoimmune thyroid diseases (AITD), including Graves’ disease and Hashimoto’s thyroiditis, are among the commonest autoimmune disorders, affecting approximately 5 % of the population. Epidemiological data support strong genetic influences on the development of AITD. Since the identification of HLA-DR3 as a major AITD susceptibility gene, there have been significant advances made in our understanding of the genetic mechanisms leading to AITD. We have shown that an amino acid substitution of alanine or glutamine with arginine at position 74 in the HLA-DR peptide binding pocket is a critical factor in the development of AITD, and we are continuing to dissect these mechanisms at the molecular level. In addition to the MHC class II genes, there are now several other confirmed gene loci associated with AITD, including immune-regulatory (CD40, CTLA-4, PTPN22, FOXP3, and CD25) and thyroid-specific genes (thyroglobulin and TSHR). Mechanistically, it is postulated that susceptibility genes interact with certain environmental triggers to induce AITD through epigenetic effects. In this review, we summarize some of the recent advances made in our laboratory dissecting the genetic–epigenetic interactions underlying AITD. As shown in our recent studies, epigenetic modifications offer an attractive mechanistic possibility that can provide further insight into the etiology of AITD.
Literature
1.
go back to reference Cocks Eschler D, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allerg Immunol. 2011;41(2):190–7. Cocks Eschler D, Hasham A, Tomer Y. Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allerg Immunol. 2011;41(2):190–7.
2.
3.
go back to reference Papanastasiou L, Vatalas IA, Koutras DA, Mastorakos G. Thyroid autoimmunity in the current iodine environment. Thyroid. 2007;17(8):729–39.PubMedCrossRef Papanastasiou L, Vatalas IA, Koutras DA, Mastorakos G. Thyroid autoimmunity in the current iodine environment. Thyroid. 2007;17(8):729–39.PubMedCrossRef
4.
go back to reference Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43(4):661–72.PubMedCrossRef Mandac JC, Chaudhry S, Sherman KE, Tomer Y. The clinical and physiological spectrum of interferon-alpha induced thyroiditis: toward a new classification. Hepatology. 2006;43(4):661–72.PubMedCrossRef
5.
go back to reference Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30:58–62.PubMedCrossRef Jacobson EM, Huber A, Tomer Y. The HLA gene complex in thyroid autoimmunity: from epidemiology to etiology. J Autoimmun. 2008;30:58–62.PubMedCrossRef
6.
go back to reference Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32:231–9.PubMedCrossRef Tomer Y, Huber A. The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun. 2009;32:231–9.PubMedCrossRef
7.
go back to reference Jacobson EM, Tomer Y. The CD40, CTLA4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J Autoimmun. 2007;28:85–98.PubMedCrossRef Jacobson EM, Tomer Y. The CD40, CTLA4, thyroglobulin, TSH receptor, and PTPN22 gene quintet and its contribution to thyroid autoimmunity: back to the future. J Autoimmun. 2007;28:85–98.PubMedCrossRef
8.
go back to reference Zamani M, Spaepen M, Bex M, Bouillon R, Cassiman JJ. Primary role of the HLA class II DRB1*0301 allele in graves disease. Am J Med Genet. 2000;95:432–7.PubMedCrossRef Zamani M, Spaepen M, Bex M, Bouillon R, Cassiman JJ. Primary role of the HLA class II DRB1*0301 allele in graves disease. Am J Med Genet. 2000;95:432–7.PubMedCrossRef
9.
go back to reference Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y. Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endcrinol Metab. 2005;90(8):4904–11.CrossRef Golden B, Levin L, Ban Y, Concepcion E, Greenberg DA, Tomer Y. Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endcrinol Metab. 2005;90(8):4904–11.CrossRef
10.
go back to reference Menconi F, Osman R, Monti MC, Greenberg DA, Concepcion ES, Tomer Y. Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci USA. 2010;107(39):16899–903.PubMedCrossRef Menconi F, Osman R, Monti MC, Greenberg DA, Concepcion ES, Tomer Y. Shared molecular amino acid signature in the HLA-DR peptide binding pocket predisposes to both autoimmune diabetes and thyroiditis. Proc Natl Acad Sci USA. 2010;107(39):16899–903.PubMedCrossRef
11.
go back to reference Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20(7):715–25.PubMedCrossRef Tomer Y. Genetic susceptibility to autoimmune thyroid disease: past, present, and future. Thyroid. 2010;20(7):715–25.PubMedCrossRef
12.
go back to reference Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi R, Tomer Y. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.PubMedCrossRef Ban Y, Davies TF, Greenberg DA, Concepcion ES, Osman R, Oashi R, Tomer Y. Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves’ disease. Genes Immun. 2004;5(3):203–8.PubMedCrossRef
13.
go back to reference Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillieres Clin Endocrinol Metab. 1995;9:631–56.PubMedCrossRef Aitman TJ, Todd JA. Molecular genetics of diabetes mellitus. Baillieres Clin Endocrinol Metab. 1995;9:631–56.PubMedCrossRef
14.
go back to reference Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta-chain protects against type 1 diabetes: a family study. Proc Natl Acad Sci USA. 1988;85:8111–5.PubMedCrossRef Morel PA, Dorman JS, Todd JA, McDevitt HO, Trucco M. Aspartic acid at position 57 of the HLA-DQ beta-chain protects against type 1 diabetes: a family study. Proc Natl Acad Sci USA. 1988;85:8111–5.PubMedCrossRef
15.
go back to reference Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr Smith J, Gibson SM, Walker N, Tomer Y, Franklyn JA, Todd JA, Gough SC. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet. 2005;76(1):157–63.PubMedCrossRef Simmonds MJ, Howson JM, Heward JM, Cordell HJ, Foxall H, Carr Smith J, Gibson SM, Walker N, Tomer Y, Franklyn JA, Todd JA, Gough SC. Regression mapping of association between the human leukocyte antigen region and Graves disease. Am J Hum Genet. 2005;76(1):157–63.PubMedCrossRef
16.
go back to reference Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, Ban Y, Jacobson EM, Concepcion ES, Li CW, Tomer Y. Molecular amino acid signatures in the MHC class II peptide binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci USA. 2008;105(37):14034–9.PubMedCrossRef Menconi F, Monti MC, Greenberg DA, Oashi T, Osman R, Davies TF, Ban Y, Jacobson EM, Concepcion ES, Li CW, Tomer Y. Molecular amino acid signatures in the MHC class II peptide binding pocket predispose to autoimmune thyroiditis in humans and in mice. Proc Natl Acad Sci USA. 2008;105(37):14034–9.PubMedCrossRef
17.
go back to reference Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, Villanueva R, Tomer Y. Possible interaction between HLA-DRβ1 and thyroglobulin variants in Graves’ disease. Thyroid. 2006;16:351–5.PubMedCrossRef Hodge SE, Ban Y, Strug LJ, Greenberg DA, Davies TF, Concepcion ES, Villanueva R, Tomer Y. Possible interaction between HLA-DRβ1 and thyroglobulin variants in Graves’ disease. Thyroid. 2006;16:351–5.PubMedCrossRef
18.
go back to reference Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, Davies TF. Common and unique susceptibility loci in Graves’ and Hashimoto disease: results of whole genome screening in a data set of 102 multiplex families. Am J Hum Genet. 2003;73(4):736–47.PubMedCrossRef Tomer Y, Ban Y, Concepcion E, Barbesino G, Villanueva R, Greenberg DA, Davies TF. Common and unique susceptibility loci in Graves’ and Hashimoto disease: results of whole genome screening in a data set of 102 multiplex families. Am J Hum Genet. 2003;73(4):736–47.PubMedCrossRef
19.
go back to reference Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet. 2001;10(13):1379–86.PubMedCrossRef Sakai K, Shirasawa S, Ishikawa N, Ito K, Tamai H, Kuma K, Akamizu T, Tanimura M, Furugaki K, Yamamoto K, Sasazuki T. Identification of susceptibility loci for autoimmune thyroid disease to 5q31-q33 and Hashimoto’s thyroiditis to 8q23-q24 by multipoint affected sib-pair linkage analysis in Japanese. Hum Mol Genet. 2001;10(13):1379–86.PubMedCrossRef
20.
go back to reference Ban Y, Greenberg DA, Concepcion ES, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100:15119–24.PubMedCrossRef Ban Y, Greenberg DA, Concepcion ES, Skrabanek L, Villanueva R, Tomer Y. Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA. 2003;100:15119–24.PubMedCrossRef
21.
go back to reference Jacobson EM, Yang H, Menconi F, Wang R, Osman R, Skrabanek L, Li CW, Fadlalla M, Gandhi A, Chaturvedi V, Smith EP, Schwemberger S, Osterburg A, Babcock GF, Tomer Y. Employing a recombinant HLA-DR3 expression system to dissect major histocompatibility complex II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective. J Biol Chem. 2009;284(49):34231–43.PubMedCrossRef Jacobson EM, Yang H, Menconi F, Wang R, Osman R, Skrabanek L, Li CW, Fadlalla M, Gandhi A, Chaturvedi V, Smith EP, Schwemberger S, Osterburg A, Babcock GF, Tomer Y. Employing a recombinant HLA-DR3 expression system to dissect major histocompatibility complex II-thyroglobulin peptide dynamism: a genetic, biochemical, and reverse immunological perspective. J Biol Chem. 2009;284(49):34231–43.PubMedCrossRef
22.
go back to reference Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Concepcion E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.PubMedCrossRef Stefan M, Jacobson EM, Huber AK, Greenberg DA, Li CW, Skrabanek L, Concepcion E, Fadlalla M, Ho K, Tomer Y. Novel variant of thyroglobulin promoter triggers thyroid autoimmunity through an epigenetic interferon α-modulated mechanism. J Biol Chem. 2011;286(36):31168–79.PubMedCrossRef
23.
go back to reference Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.PubMedCrossRef Taniguchi T, Ogasawara K, Takaoka A, Tanaka N. IRF family of transcription factors as regulators of host defense. Annu Rev Immunol. 2001;19:623–55.PubMedCrossRef
24.
go back to reference Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002;12(12):1129–35.PubMedCrossRef Tomer Y, Concepcion E, Greenberg DA. A C/T single nucleotide polymorphism in the region of the CD40 gene is associated with Graves’ disease. Thyroid. 2002;12(12):1129–35.PubMedCrossRef
25.
go back to reference Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a C/T single nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves’ disease in Japanese. Thyroid. 2006;16(5):443–6.PubMedCrossRef Ban Y, Tozaki T, Taniyama M, Tomita M, Ban Y. Association of a C/T single nucleotide polymorphism in the 5′ untranslated region of the CD40 gene with Graves’ disease in Japanese. Thyroid. 2006;16(5):443–6.PubMedCrossRef
26.
go back to reference Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, Ho K, Tomer Y. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun. 2007;8(3):205–14.PubMedCrossRef Jacobson EM, Huber AK, Akeno N, Sivak M, Li CW, Concepcion E, Ho K, Tomer Y. A CD40 Kozak sequence polymorphism and susceptibility to antibody-mediated autoimmune conditions: the role of CD40 tissue-specific expression. Genes Immun. 2007;8(3):205–14.PubMedCrossRef
27.
go back to reference Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology. 2005;146(6):2684–91.PubMedCrossRef Jacobson EM, Concepcion E, Oashi T, Tomer Y. A Graves’ disease-associated kozak sequence single-nucleotide polymorphism enhances the efficiency of CD40 gene translation: a case for translational pathophysiology. Endocrinology. 2005;146(6):2684–91.PubMedCrossRef
28.
go back to reference Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165:6635–43.PubMed Sato S, Hasegawa M, Fujimoto M, Tedder TF, Takehara K. Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol. 2000;165:6635–43.PubMed
29.
go back to reference Metcalfe RA, McIntosh RS, Marelli-Berg F, Lombardi G, Lechler R, Weetman AP. Detection of CD40 on human thyroid follicular cells: analysis of expression and function. J Clin Endocrinol Metab. 1998;83(4):1268–74.PubMedCrossRef Metcalfe RA, McIntosh RS, Marelli-Berg F, Lombardi G, Lechler R, Weetman AP. Detection of CD40 on human thyroid follicular cells: analysis of expression and function. J Clin Endocrinol Metab. 1998;83(4):1268–74.PubMedCrossRef
30.
go back to reference Jungel A, Ospelt C, Gay S. What can we learn from epigenetics in the year 2009? Curr Opin Rheumatol. 2010;22(3):284–92.PubMedCrossRef Jungel A, Ospelt C, Gay S. What can we learn from epigenetics in the year 2009? Curr Opin Rheumatol. 2010;22(3):284–92.PubMedCrossRef
31.
go back to reference Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K. High-resolution profiling of histone methylations in the human genome. Cell. 2007;129(4):823–37.PubMedCrossRef
32.
go back to reference Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3:33.PubMedCrossRef Bell CG, Teschendorff AE, Rakyan VK, Maxwell AP, Beck S, Savage DA. Genome-wide DNA methylation analysis for diabetic nephropathy in type 1 diabetes mellitus. BMC Med Genomics. 2010;3:33.PubMedCrossRef
33.
go back to reference Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R711–22.PubMedCrossRef Heerwagen MJ, Miller MR, Barbour LA, Friedman JE. Maternal obesity and fetal metabolic programming: a fertile epigenetic soil. Am J Physiol Regul Integr Comp Physiol. 2010;299(3):R711–22.PubMedCrossRef
34.
go back to reference Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol. 2009;5(5):266–72.PubMedCrossRef Karouzakis E, Gay RE, Gay S, Neidhart M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat Rev Rheumatol. 2009;5(5):266–72.PubMedCrossRef
35.
go back to reference Youngblood B, Reich NO. The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics. 2008;3(3):149–56.PubMedCrossRef Youngblood B, Reich NO. The early expressed HIV-1 genes regulate DNMT1 expression. Epigenetics. 2008;3(3):149–56.PubMedCrossRef
Metadata
Title
Genetic and epigenetic mechanisms in thyroid autoimmunity
Authors
Alia Hasham
Yaron Tomer
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Immunologic Research / Issue 1-3/2012
Print ISSN: 0257-277X
Electronic ISSN: 1559-0755
DOI
https://doi.org/10.1007/s12026-012-8302-x

Other articles of this Issue 1-3/2012

Immunologic Research 1-3/2012 Go to the issue

Immunology at Mount Sinai

Human B cell defects in perspective