Skip to main content
Top
Published in: European Journal of Nuclear Medicine and Molecular Imaging 2/2005

01-02-2005 | Review Article

Genetic and epigenetic features in radiation sensitivity

Part I: Cell signalling in radiation response

Authors: Michel H. Bourguignon, Pablo A. Gisone, Maria R. Perez, Severino Michelin, Diana Dubner, Marina Di Giorgio, Edgardo D. Carosella

Published in: European Journal of Nuclear Medicine and Molecular Imaging | Issue 2/2005

Login to get access

Abstract

Recent progress especially in the field of gene identification and expression has attracted greater attention to genetic and epigenetic susceptibility to cancer, possibly enhanced by ionising radiation. It has been proposed that the occurrence and severity of the adverse reactions to radiation therapy are also influenced by such genetic susceptibility. This issue is especially important for radiation therapists since hypersensitive patients may suffer from adverse effects in normal tissues following standard radiation therapy, while normally sensitive patients could receive higher doses of radiation offering a better likelihood of cure for malignant tumours. This paper, the first of two parts, reviews the main mechanisms involved in cell response to ionising radiation. DNA repair machinery and cell signalling pathways are considered and their role in radiosensitivity is analysed. The implication of non-targeted and delayed effects in radiosensitivity is also discussed.
Literature
1.
go back to reference Twardella D, Chang-Claude J. Studies on radiosensitivity from an epidemiological point of view—overview of methods and results. Radiother Oncol 2002;62:249–60.CrossRef Twardella D, Chang-Claude J. Studies on radiosensitivity from an epidemiological point of view—overview of methods and results. Radiother Oncol 2002;62:249–60.CrossRef
2.
go back to reference Turreson I, Nyman J, Holmberg E, Odén A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 1996;36:1065–75.CrossRef Turreson I, Nyman J, Holmberg E, Odén A. Prognostic factors for acute and late skin reactions in radiotherapy patients. Int J Radiat Oncol Biol Phys 1996;36:1065–75.CrossRef
3.
go back to reference Marples B, Greco O, Joiner ML, Scott SD. Radiogenetic therapy: strategies to overcome tumor resistance. Curr Pharm Des 2003;9:2105–12. Marples B, Greco O, Joiner ML, Scott SD. Radiogenetic therapy: strategies to overcome tumor resistance. Curr Pharm Des 2003;9:2105–12.
4.
go back to reference Appleby JM, Barber JB, Levine E, Varley JM, Taylor AM, Stankovic T, et al. Absence of mutations in the ATM gene in breast cancer patients with severe response to radiotherapy. Br J Cancer 1997;76:1546–9. Appleby JM, Barber JB, Levine E, Varley JM, Taylor AM, Stankovic T, et al. Absence of mutations in the ATM gene in breast cancer patients with severe response to radiotherapy. Br J Cancer 1997;76:1546–9.
5.
go back to reference Geara FB, Peters LJ, Ang KK, Garden AS, Tucker SL, Levy LB, et al. Comparison between normal tissue reactions and local tumor control in head and neck cancer patients treated by definitive radiotherapy. Int J Radiat Oncol Biol Phys 1996;35:455–62.CrossRef Geara FB, Peters LJ, Ang KK, Garden AS, Tucker SL, Levy LB, et al. Comparison between normal tissue reactions and local tumor control in head and neck cancer patients treated by definitive radiotherapy. Int J Radiat Oncol Biol Phys 1996;35:455–62.CrossRef
6.
go back to reference Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH. The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother Oncol 1994;33:228–38. Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH. The relationship between cellular radiation sensitivity and tissue response may provide the basis for individualising radiotherapy schedules. Radiother Oncol 1994;33:228–38.
7.
go back to reference Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 1992;339:1570–1.CrossRef Burnet NG, Nyman J, Turesson I, Wurm R, Yarnold JR, Peacock JH. Prediction of normal-tissue tolerance to radiotherapy from in-vitro cellular radiation sensitivity. Lancet 1992;339:1570–1.CrossRef
8.
go back to reference MacKay RI, Niemierko A, Goitein M., Hendry JH. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. Radiother Oncol 1998;46:215–6.CrossRef MacKay RI, Niemierko A, Goitein M., Hendry JH. Potential clinical impact of normal-tissue intrinsic radiosensitivity testing. Radiother Oncol 1998;46:215–6.CrossRef
9.
go back to reference Popanda O, Ebbeler R, Twardella D, Helmbold I, Gotzes F, Schmezer P, et al. Radiation-induced DNA damage and repair in lymphocytes from breast cancer patients and their correlation with acute skin reactions to radiotherapy. Int J Radiat Oncol Biol Phys 2003;55:1216–25.CrossRef Popanda O, Ebbeler R, Twardella D, Helmbold I, Gotzes F, Schmezer P, et al. Radiation-induced DNA damage and repair in lymphocytes from breast cancer patients and their correlation with acute skin reactions to radiotherapy. Int J Radiat Oncol Biol Phys 2003;55:1216–25.CrossRef
10.
go back to reference Alapetite C, Thirion P, de la Rochefordiere A, Cosset JM, Moustacchi E. Analysis by alkaline comet assay of cancer patients with severe reactions to radiotherapy: defective rejoining of radioinduced DNA strand breaks in lymphocytes of breast cancer patients. Int J Cancer 1999;83:83–90. Alapetite C, Thirion P, de la Rochefordiere A, Cosset JM, Moustacchi E. Analysis by alkaline comet assay of cancer patients with severe reactions to radiotherapy: defective rejoining of radioinduced DNA strand breaks in lymphocytes of breast cancer patients. Int J Cancer 1999;83:83–90.
11.
go back to reference Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an-ataxia telangiectasia gene to chromosome 11q 22–23. Nature 1988;336:577–80.CrossRef Gatti RA, Berkel I, Boder E, Braedt G, Charmley P, Concannon P, et al. Localization of an-ataxia telangiectasia gene to chromosome 11q 22–23. Nature 1988;336:577–80.CrossRef
12.
go back to reference Angele S, Romestaing P, Moullan N, Vuillaume M, Chapot B, Friesen M, et al. ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res 2003;63:8717–25. Angele S, Romestaing P, Moullan N, Vuillaume M, Chapot B, Friesen M, et al. ATM haplotypes and cellular response to DNA damage: association with breast cancer risk and clinical radiosensitivity. Cancer Res 2003;63:8717–25.
13.
go back to reference Sharp C, Cox R. Genetic susceptibility to radiation effects: possible implication for medical ionising radiation exposures. Eur J Nucl Med 1999;26:425–8.CrossRef Sharp C, Cox R. Genetic susceptibility to radiation effects: possible implication for medical ionising radiation exposures. Eur J Nucl Med 1999;26:425–8.CrossRef
14.
go back to reference Cosset JM, Moustacchi E. Tumor and individual radiosensitivity. An introduction. Cancer Radiother 1998;2:523–9. Cosset JM, Moustacchi E. Tumor and individual radiosensitivity. An introduction. Cancer Radiother 1998;2:523–9.
15.
go back to reference Moustacchi E. DNA damage and repair: consequences on dose-responses. Mutat Res 2000;464:35–40. Moustacchi E. DNA damage and repair: consequences on dose-responses. Mutat Res 2000;464:35–40.
16.
go back to reference Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:366–74.CrossRef Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001;411:366–74.CrossRef
17.
go back to reference Averbeck D. Mécanismes de réparation et mutagenèse radio-induite chez les eucaryotes supérieurs. Cancer Radiother 2000;4:335–54. Averbeck D. Mécanismes de réparation et mutagenèse radio-induite chez les eucaryotes supérieurs. Cancer Radiother 2000;4:335–54.
19.
go back to reference Christmann M, Tomicic M, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology 2003;193:3–34.CrossRef Christmann M, Tomicic M, Roos WP, Kaina B. Mechanisms of human DNA repair: an update. Toxicology 2003;193:3–34.CrossRef
20.
go back to reference Hanawalt PC. Heterogeneity of DNA repair at the gene level. Mutat Res 1991;247:203–11. Hanawalt PC. Heterogeneity of DNA repair at the gene level. Mutat Res 1991;247:203–11.
21.
go back to reference Li GM, Modrich P. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci U S A 1995;92:1950–4. Li GM, Modrich P. Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci U S A 1995;92:1950–4.
22.
go back to reference Genschel J, Bazemore LR, Modrich P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 2002;277:13302–11.CrossRef Genschel J, Bazemore LR, Modrich P. Human exonuclease I is required for 5′ and 3′ mismatch repair. J Biol Chem 2002;277:13302–11.CrossRef
23.
go back to reference Jiricny J, Nyström-Lahtti M. Mismatch repair defects in cancer. Curr Opin Genet Dev 2000;10:157–61.CrossRef Jiricny J, Nyström-Lahtti M. Mismatch repair defects in cancer. Curr Opin Genet Dev 2000;10:157–61.CrossRef
24.
go back to reference Johnson RD, Jasin M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 2001;29:196–201.CrossRef Johnson RD, Jasin M. Double-strand-break-induced homologous recombination in mammalian cells. Biochem Soc Trans 2001;29:196–201.CrossRef
25.
go back to reference Jackson S. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687–96.CrossRef Jackson S. Sensing and repairing DNA double-strand breaks. Carcinogenesis 2002;23:687–96.CrossRef
26.
go back to reference Jeggo PA, Taccioli GE, Jackson SP. Ménage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 1995;17:949–57.PubMed Jeggo PA, Taccioli GE, Jackson SP. Ménage à trois: double strand break repair, V(D)J recombination and DNA-PK. Bioessays 1995;17:949–57.PubMed
27.
go back to reference Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer 2004;90:1297–301.CrossRef Willers H, Dahm-Daphi J, Powell SN. Repair of radiation damage to DNA. Br J Cancer 2004;90:1297–301.CrossRef
28.
go back to reference Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001;20:5572–9.CrossRef Ferguson DO, Alt FW. DNA double strand break repair and chromosomal translocation: lessons from animal models. Oncogene 2001;20:5572–9.CrossRef
29.
go back to reference Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gotlieb TM, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995;80:813–23.CrossRef Blunt T, Finnie NJ, Taccioli GE, Smith GC, Demengeot J, Gotlieb TM, et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell 1995;80:813–23.CrossRef
30.
go back to reference UNSCEAR Report (2000) Sources and effects of ionising radiation, vol 2: effects. Annex F. Paragraph 34. UNSCEAR Report (2000) Sources and effects of ionising radiation, vol 2: effects. Annex F. Paragraph 34.
31.
go back to reference Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002;33:1–14.CrossRef Wallace SS. Biological consequences of free radical-damaged DNA bases. Free Radic Biol Med 2002;33:1–14.CrossRef
32.
go back to reference Davis TW, Wilson-Van Patten CR, Sharda N, Meyers M, Kinsella TJ, Boothman DA. DNA repair in higher eukaryotes. In: Nickoloff JA, Hoekstra M, editors. DNA damage and repair. Vol 2. Totowa: Human Press; 1998. p. 223–61. Davis TW, Wilson-Van Patten CR, Sharda N, Meyers M, Kinsella TJ, Boothman DA. DNA repair in higher eukaryotes. In: Nickoloff JA, Hoekstra M, editors. DNA damage and repair. Vol 2. Totowa: Human Press; 1998. p. 223–61.
33.
go back to reference Jackson SP. DNA-dependent protein kinase. Int J Biochem Cell Biol 1997;29:935–8.CrossRef Jackson SP. DNA-dependent protein kinase. Int J Biochem Cell Biol 1997;29:935–8.CrossRef
34.
go back to reference Fei P, El-Deiry WS. P53 and radiation responses. Oncogene 2003;22:5774–83.CrossRef Fei P, El-Deiry WS. P53 and radiation responses. Oncogene 2003;22:5774–83.CrossRef
35.
go back to reference Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 2001;11:71–7.CrossRefPubMed Shiloh Y. ATM and ATR: networking cellular responses to DNA damage. Curr Opin Genet Dev 2001;11:71–7.CrossRefPubMed
36.
go back to reference Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999;13:152–7. Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY, et al. A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 1999;13:152–7.
37.
go back to reference Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR III, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998;93:477–86.CrossRefPubMed Carney JP, Maser RS, Olivares H, Davis EM, Le Beau M, Yates JR III, et al. The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: linkage of double-strand break repair to the cellular DNA damage response. Cell 1998;93:477–86.CrossRefPubMed
38.
go back to reference Michelson R, Weinert T. Sensor-less checkpoint activation? Nat Cell Biol 1999;1:E177–9.CrossRef Michelson R, Weinert T. Sensor-less checkpoint activation? Nat Cell Biol 1999;1:E177–9.CrossRef
39.
go back to reference Zou L, Cortez D, Elledge SJ. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 2002;16:198–208.CrossRef Zou L, Cortez D, Elledge SJ. Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 2002;16:198–208.CrossRef
40.
go back to reference Lucke-Huhle C. Alpha-irradiation-induced G2 delay: a period of cell recovery. Radiat Res 1982;89:298–308. Lucke-Huhle C. Alpha-irradiation-induced G2 delay: a period of cell recovery. Radiat Res 1982;89:298–308.
41.
go back to reference Anderson CW, Carter TH. The DNA-activated protein kinase-DNA-PK. Curr Top Microbiol Immunol 1996;217:91–111. Anderson CW, Carter TH. The DNA-activated protein kinase-DNA-PK. Curr Top Microbiol Immunol 1996;217:91–111.
42.
go back to reference Jeggo PA. DNA-PK: at the cross-roads of biochemistry and genetics. Mutat Res 1997;384:1–14. Jeggo PA. DNA-PK: at the cross-roads of biochemistry and genetics. Mutat Res 1997;384:1–14.
43.
go back to reference Ziegler M, Oei SL. A cellular survival switch:poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001;23:543–8.CrossRef Ziegler M, Oei SL. A cellular survival switch:poly(ADP-ribosyl)ation stimulates DNA repair and silences transcription. Bioessays 2001;23:543–8.CrossRef
44.
go back to reference Althaus FR, Kleczkowska HE, Malanga M, Muntener CR, Pleschke JM, Ebner M, et al. Poly ADP-ribosylation: a DNA break signal mechanism. Mol Cell Biochem 1999;193:5–11.CrossRef Althaus FR, Kleczkowska HE, Malanga M, Muntener CR, Pleschke JM, Ebner M, et al. Poly ADP-ribosylation: a DNA break signal mechanism. Mol Cell Biochem 1999;193:5–11.CrossRef
45.
go back to reference Satoh MS, Poirier GG, Lindahl T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 1994;33:7099–106. Satoh MS, Poirier GG, Lindahl T. Dual function for poly(ADP-ribose) synthesis in response to DNA strand breakage. Biochemistry 1994;33:7099–106.
46.
go back to reference Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002;36:617–56.CrossRef Nyberg KA, Michelson RJ, Putnam CW, Weinert TA. Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 2002;36:617–56.CrossRef
47.
go back to reference Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421:499–506.CrossRefPubMed Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 2003;421:499–506.CrossRefPubMed
48.
go back to reference Griffiths DJ, Barbet NC, McCready S, Lehmann AR, Carr AM. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J 1995;14:5812–23. Griffiths DJ, Barbet NC, McCready S, Lehmann AR, Carr AM. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J 1995;14:5812–23.
49.
go back to reference Green CM, Erdjument-Bromage H, Tempst P, Lowndes NF. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 2000;10:39–42.CrossRef Green CM, Erdjument-Bromage H, Tempst P, Lowndes NF. A novel Rad24 checkpoint protein complex closely related to replication factor C. Curr Biol 2000;10:39–42.CrossRef
50.
go back to reference Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A. Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A 2001;98:11236–41.CrossRef Lindsey-Boltz LA, Bermudez VP, Hurwitz J, Sancar A. Purification and characterization of human DNA damage checkpoint Rad complexes. Proc Natl Acad Sci U S A 2001;98:11236–41.CrossRef
51.
go back to reference Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 2003;100:1633–8.CrossRef Bermudez VP, Lindsey-Boltz LA, Cesare AJ, Maniwa Y, Griffith JD, Hurwitz J, et al. Loading of the human 9-1-1 checkpoint complex onto DNA by the checkpoint clamp loader hRad17-replication factor C complex in vitro. Proc Natl Acad Sci U S A 2003;100:1633–8.CrossRef
52.
go back to reference Petrini JH. The Mre11 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 2000;12:293–6.CrossRefPubMed Petrini JH. The Mre11 complex and ATM: collaborating to navigate S phase. Curr Opin Cell Biol 2000;12:293–6.CrossRefPubMed
53.
go back to reference Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 2000;408:429–32.CrossRef Scully R, Livingston DM. In search of the tumour-suppressor functions of BRCA1 and BRCA2. Nature 2000;408:429–32.CrossRef
54.
go back to reference Xu B, Kim St, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001;21:3445–50.CrossRef Xu B, Kim St, Kastan MB. Involvement of Brca1 in S-phase and G(2)-phase checkpoints after ionizing irradiation. Mol Cell Biol 2001;21:3445–50.CrossRef
55.
go back to reference Jongmans W, Vuillaume M, Chrzanowska K, Smeets D, Sperling K, Hall J. Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol 1997;17:5016–22.PubMed Jongmans W, Vuillaume M, Chrzanowska K, Smeets D, Sperling K, Hall J. Nijmegen breakage syndrome cells fail to induce the p53-mediated DNA damage response following exposure to ionizing radiation. Mol Cell Biol 1997;17:5016–22.PubMed
56.
57.
go back to reference Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10:1054–72. Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev 1996;10:1054–72.
58.
go back to reference Sturzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 1996;15:1992–2002. Sturzbecher HW, Donzelmann B, Henning W, Knippschild U, Buchhop S. p53 is linked directly to homologous recombination processes via RAD51/RecA protein interaction. EMBO J 1996;15:1992–2002.
59.
go back to reference Jongmans W, Vuillaume M, Kleijer WJ, Lakin ND, Hall J. The p53-mediated DNA damage response to ionizing radiation in fibroblasts from ataxia-without-telangiectasia patients. Int J Radiat Biol 1998 ;74:287–95.CrossRef Jongmans W, Vuillaume M, Kleijer WJ, Lakin ND, Hall J. The p53-mediated DNA damage response to ionizing radiation in fibroblasts from ataxia-without-telangiectasia patients. Int J Radiat Biol 1998 ;74:287–95.CrossRef
60.
go back to reference Kachnic LA, Wu B, Wunsch H, Mekeel KL, DeFrank JS, Tang W, et al. The ability of p53 to activate downstream genes p21(WAF1/cip1) and MDM2, and cell cycle arrest following DNA damage is delayed and attenuated in scid cells deficient in the DNA-dependent protein kinase. J Biol Chem 1999;274:13111–7.CrossRef Kachnic LA, Wu B, Wunsch H, Mekeel KL, DeFrank JS, Tang W, et al. The ability of p53 to activate downstream genes p21(WAF1/cip1) and MDM2, and cell cycle arrest following DNA damage is delayed and attenuated in scid cells deficient in the DNA-dependent protein kinase. J Biol Chem 1999;274:13111–7.CrossRef
61.
go back to reference Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–12.PubMed Sherr CJ, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999;13:1501–12.PubMed
62.
go back to reference Dotto GP. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 2000;1471:M43–56. Dotto GP. p21(WAF1/Cip1): more than a break to the cell cycle? Biochim Biophys Acta 2000;1471:M43–56.
63.
go back to reference Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000;408:433–9. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature 2000;408:433–9.
64.
go back to reference Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T, et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 2001;61:4990–3. Lukas C, Bartkova J, Latella L, Falck J, Mailand N, Schroeder T, et al. DNA damage-activated kinase Chk2 is independent of proliferation or differentiation yet correlates with tissue biology. Cancer Res 2001;61:4990–3.
65.
go back to reference Blattner C, Hay T, Meek DW, Lane DP. Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol 2002;22:6170–82.CrossRef Blattner C, Hay T, Meek DW, Lane DP. Hypophosphorylation of Mdm2 augments p53 stability. Mol Cell Biol 2002;22:6170–82.CrossRef
66.
go back to reference Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature1994;370:220–3.CrossRef Caelles C, Helmberg A, Karin M. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature1994;370:220–3.CrossRef
67.
go back to reference Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 1994;8:2817–30. Wagner AJ, Kokontis JM, Hay N. Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 1994;8:2817–30.
68.
go back to reference Gao C, Tsuchida N. Activation of caspases in p53-induced transactivation-independent apoptosis. Jpn J Cancer Res 1999;90:180–7. Gao C, Tsuchida N. Activation of caspases in p53-induced transactivation-independent apoptosis. Jpn J Cancer Res 1999;90:180–7.
69.
go back to reference Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577–90.CrossRefPubMed Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, et al. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 2003;11:577–90.CrossRefPubMed
71.
go back to reference Fei P, Bernhard EJ, El-Deiry WS. Tissue-specific induction of p53 targets in vivo. Cancer Res 2002;62:7316–27.PubMed Fei P, Bernhard EJ, El-Deiry WS. Tissue-specific induction of p53 targets in vivo. Cancer Res 2002;62:7316–27.PubMed
72.
go back to reference Neecke H, Lucchini G, Longhese MP. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. EMBO J 1999;18:4485–97.CrossRef Neecke H, Lucchini G, Longhese MP. Cell cycle progression in the presence of irreparable DNA damage is controlled by a Mec1- and Rad53-dependent checkpoint in budding yeast. EMBO J 1999;18:4485–97.CrossRef
73.
go back to reference Vialard JE, Gilbert CS, Green CM, Lowndes NF. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 1998;17:5679–88.CrossRef Vialard JE, Gilbert CS, Green CM, Lowndes NF. The budding yeast Rad9 checkpoint protein is subjected to Mec1/Tel1-dependent hyperphosphorylation and interacts with Rad53 after DNA damage. EMBO J 1998;17:5679–88.CrossRef
74.
go back to reference Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000;14:2989–3002.CrossRef Tibbetts RS, Cortez D, Brumbaugh KM, Scully R, Livingston D, Elledge SJ, et al. Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 2000;14:2989–3002.CrossRef
75.
go back to reference Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 2001;13:225–31.CrossRef Durocher D, Jackson SP. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol 2001;13:225–31.CrossRef
76.
go back to reference Friedberg EC, Walker GC, Siede W. DNA Repair Mutagenesis. Washington: ASM; 1995. Friedberg EC, Walker GC, Siede W. DNA Repair Mutagenesis. Washington: ASM; 1995.
77.
go back to reference Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997;277:1497–501.CrossRefPubMed Sanchez Y, Wong C, Thoma RS, Richman R, Wu Z, Piwnica-Worms H, et al. Conservation of the Chk1 checkpoint pathway in mammals: linkage of DNA damage to Cdk regulation through Cdc25. Science 1997;277:1497–501.CrossRefPubMed
78.
go back to reference Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000;14:1448–59.CrossRef Liu Q, Guntuku S, Cui XS, Matsuoka S, Cortez D, Tamai K, et al. Chk1 is an essential kinase that is regulated by Atr and required for the G(2)/M DNA damage checkpoint. Genes Dev 2000;14:1448–59.CrossRef
79.
go back to reference Rhind N, Russell P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J Cell Sci 2000;113:3889–96. Rhind N, Russell P. Chk1 and Cds1: linchpins of the DNA damage and replication checkpoint pathways. J Cell Sci 2000;113:3889–96.
80.
go back to reference Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 2000;60:3299–304. Gatei M, Scott SP, Filippovitch I, Soronika N, Lavin MF, Weber B, et al. Role for ATM in DNA damage-induced phosphorylation of BRCA1. Cancer Res 2000;60:3299–304.
81.
go back to reference Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000;406:210–5.CrossRef Li S, Ting NS, Zheng L, Chen PL, Ziv Y, Shiloh Y, et al. Functional link of BRCA1 and ataxia telangiectasia gene product in DNA damage response. Nature 2000;406:210–5.CrossRef
82.
go back to reference Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’Neill TB, et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000;405:477–82.CrossRefPubMed Wu X, Ranganathan V, Weisman DS, Heine WF, Ciccone DN, O’Neill TB, et al. ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 2000;405:477–82.CrossRefPubMed
83.
go back to reference Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 2003;22:5834–47.CrossRef Iliakis G, Wang Y, Guan J, Wang H. DNA damage checkpoint control in cells exposed to ionizing radiation. Oncogene 2003;22:5834–47.CrossRef
84.
go back to reference Xu Y, Baltimore D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 1996;10:2401–10. Xu Y, Baltimore D. Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 1996;10:2401–10.
85.
go back to reference Furnari B, Rhind N, Russell P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 1997;277:1495–97.CrossRef Furnari B, Rhind N, Russell P. Cdc25 mitotic inducer targeted by chk1 DNA damage checkpoint kinase. Science 1997;277:1495–97.CrossRef
86.
go back to reference Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Mol Cell Biol 1997;17:2020–9. Morgan SE, Lovly C, Pandita TK, Shiloh Y, Kastan MB. Fragments of ATM which have dominant-negative or complementing activity. Mol Cell Biol 1997;17:2020–9.
87.
go back to reference Liu ZG, Baskaran R, Lea-Chou ET, Wood LD, Chen Y, Karin M, et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 1996;384:273–6.CrossRef Liu ZG, Baskaran R, Lea-Chou ET, Wood LD, Chen Y, Karin M, et al. Three distinct signalling responses by murine fibroblasts to genotoxic stress. Nature 1996;384:273–6.CrossRef
88.
go back to reference Chen YR, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 1996;271:31929–36.CrossRef Chen YR, Wang X, Templeton D, Davis RJ, Tan TH. The role of c-Jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C and gamma radiation. Duration of JNK activation may determine cell death and proliferation. J Biol Chem 1996;271:31929–36.CrossRef
89.
go back to reference Martinez JD, Pennington ME, Craven MT, Warters RL, Cress AE. Free radicals generated by ionizing radiation signal nuclear translocation of p53. Cell Growth Differ 1997;8:941–9. Martinez JD, Pennington ME, Craven MT, Warters RL, Cress AE. Free radicals generated by ionizing radiation signal nuclear translocation of p53. Cell Growth Differ 1997;8:941–9.
90.
go back to reference Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–51.CrossRef Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 1993;75:241–51.CrossRef
91.
go back to reference Kasid U, Suy S, Dent P, Ray S, Whiteside TL, Sturgill TW. Activation of Raf by ionizing radiation. Nature 1996;382:813–6.CrossRef Kasid U, Suy S, Dent P, Ray S, Whiteside TL, Sturgill TW. Activation of Raf by ionizing radiation. Nature 1996;382:813–6.CrossRef
92.
go back to reference Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988;239:645–7. Sklar MD. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science 1988;239:645–7.
93.
go back to reference McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, et al. Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res 1990;50:97–102.PubMed McKenna WG, Weiss MC, Endlich B, Ling CC, Bakanauskas VJ, Kelsten ML, et al. Synergistic effect of the v-myc oncogene with H-ras on radioresistance. Cancer Res 1990;50:97–102.PubMed
94.
go back to reference Chiarugi V, Magnelli L, Cinelli M, Turchetti A, Ruggiero M. Dominant oncogenes, tumor suppressors, and radiosensitivity. Cell Mol Biol Res 1995;41:161–6. Chiarugi V, Magnelli L, Cinelli M, Turchetti A, Ruggiero M. Dominant oncogenes, tumor suppressors, and radiosensitivity. Cell Mol Biol Res 1995;41:161–6.
95.
go back to reference Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003;22:5897–906.CrossRef Kolesnick R, Fuks Z. Radiation and ceramide-induced apoptosis. Oncogene 2003;22:5897–906.CrossRef
96.
go back to reference Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997;17(3):1595–606. Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 1997;17(3):1595–606.
97.
go back to reference Friedlander RM, Gagliardini V, Rotello RJ, Yuan J. Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med 1996;184:717–24.CrossRef Friedlander RM, Gagliardini V, Rotello RJ, Yuan J. Functional role of interleukin 1 beta (IL-1 beta) in IL-1 beta-converting enzyme-mediated apoptosis. J Exp Med 1996;184:717–24.CrossRef
98.
go back to reference Rodriguez C, Lacasse C, Hoang T. Interleukin-1 beta suppresses apoptosis in CD34 positive bone marrow cells through activation of the type I IL-1 receptor. J Cell Physiol 1996;166:387–96.CrossRef Rodriguez C, Lacasse C, Hoang T. Interleukin-1 beta suppresses apoptosis in CD34 positive bone marrow cells through activation of the type I IL-1 receptor. J Cell Physiol 1996;166:387–96.CrossRef
99.
go back to reference Braunschweiger PG, Basrur V, Santos O, Adessa A, Houdek P, Markoe AM. Radioresistance in murine solid tumors induced by interleukin-1. Radiat Res 1996;145:150–6. Braunschweiger PG, Basrur V, Santos O, Adessa A, Houdek P, Markoe AM. Radioresistance in murine solid tumors induced by interleukin-1. Radiat Res 1996;145:150–6.
100.
go back to reference Neta R, Oppenheim JJ, Wang JM, Snapper CM, Moorman MA, Dubois CM. Synergy of IL-1 and stem cell factor in radioprotection of mice is associated with IL-1 up-regulation of mRNA and protein expression for c-kit on bone marrow cells. J Immunol 1994;153:1536–43. Neta R, Oppenheim JJ, Wang JM, Snapper CM, Moorman MA, Dubois CM. Synergy of IL-1 and stem cell factor in radioprotection of mice is associated with IL-1 up-regulation of mRNA and protein expression for c-kit on bone marrow cells. J Immunol 1994;153:1536–43.
101.
go back to reference Neta R, Perlstein R, Vogel SN, Ledney GD, Abrams J. Role of interleukin 6 (IL-6) in protection from lethal irradiation and in endocrine responses to IL-1 and tumor necrosis factor. J Exp Med 1992;175:689–94.CrossRef Neta R, Perlstein R, Vogel SN, Ledney GD, Abrams J. Role of interleukin 6 (IL-6) in protection from lethal irradiation and in endocrine responses to IL-1 and tumor necrosis factor. J Exp Med 1992;175:689–94.CrossRef
102.
go back to reference Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A 1989;86:10104–7. Hallahan DE, Spriggs DR, Beckett MA, Kufe DW, Weichselbaum RR. Increased tumor necrosis factor alpha mRNA after cellular exposure to ionizing radiation. Proc Natl Acad Sci U S A 1989;86:10104–7.
103.
go back to reference Hallahan DE, Beckett MA, Kufe D, Weichselbaum RR. The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 1990;19:69–74. Hallahan DE, Beckett MA, Kufe D, Weichselbaum RR. The interaction between recombinant human tumor necrosis factor and radiation in 13 human tumor cell lines. Int J Radiat Oncol Biol Phys 1990;19:69–74.
104.
go back to reference Weichselbaum RR, Beckett MA, Vokes EE, Brachman DG, Haraf D, Hallahan D, et al. Cellular and molecular mechanisms of radioresistance. Cancer Treat Res 1995;74:131–40. Weichselbaum RR, Beckett MA, Vokes EE, Brachman DG, Haraf D, Hallahan D, et al. Cellular and molecular mechanisms of radioresistance. Cancer Treat Res 1995;74:131–40.
106.
go back to reference Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274:782–4.CrossRefPubMed Beg AA, Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 1996;274:782–4.CrossRefPubMed
107.
go back to reference Linard C, Marquette C, Mathieu J, Pennequin A, Clarencon D, Mathe D. Acute insuction of inflammatory cytokine expression after gamma irradiation in the rat:effect of an NF-κB inhibitor. Int J Radiat Biol Phys 2004;58:427–34.CrossRef Linard C, Marquette C, Mathieu J, Pennequin A, Clarencon D, Mathe D. Acute insuction of inflammatory cytokine expression after gamma irradiation in the rat:effect of an NF-κB inhibitor. Int J Radiat Biol Phys 2004;58:427–34.CrossRef
108.
go back to reference Gorgojo L, Little JB. Expression of lethal mutations in the progeny of irradiated cells. Int J Radiat Biol 1989;55:619–30. Gorgojo L, Little JB. Expression of lethal mutations in the progeny of irradiated cells. Int J Radiat Biol 1989;55:619–30.
109.
go back to reference Seymour CB, Mothersill C, Alper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol 1989;50:167–79. Seymour CB, Mothersill C, Alper T. High yields of lethal mutations in somatic mammalian cells that survive ionizing radiation. Int J Radiat Biol 1989;50:167–79.
110.
go back to reference Morgan W. Non-targeted and delayed effects of exposure to ionizing radiation: ionizing radiation induced genomic instability and bystander effects in vitro. Radiat Res 2003;159:567–80. Morgan W. Non-targeted and delayed effects of exposure to ionizing radiation: ionizing radiation induced genomic instability and bystander effects in vitro. Radiat Res 2003;159:567–80.
111.
go back to reference Smith LE, Nagar S, King GJ, Morgan WF. Radiation-induced genomic instability: radiation quality and dose-response. Health Phys 2003;85:23–30.CrossRef Smith LE, Nagar S, King GJ, Morgan WF. Radiation-induced genomic instability: radiation quality and dose-response. Health Phys 2003;85:23–30.CrossRef
112.
go back to reference Kaplan MI, Limoli CL, Morgan WF. Perpetuating radiation-induced chromosomal instability. Radiat Oncol Investig 1997;5:124–8.CrossRef Kaplan MI, Limoli CL, Morgan WF. Perpetuating radiation-induced chromosomal instability. Radiat Oncol Investig 1997;5:124–8.CrossRef
113.
go back to reference Sinclair WK. X-ray induced heritable damage and small colony formation in cultured mammalian cells. Radiat Res 1964;21:584–611. Sinclair WK. X-ray induced heritable damage and small colony formation in cultured mammalian cells. Radiat Res 1964;21:584–611.
114.
go back to reference Chang WP, Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol 1991;60:483–96. Chang WP, Little JB. Delayed reproductive death in X-irradiated Chinese hamster ovary cells. Int J Radiat Biol 1991;60:483–96.
115.
go back to reference Manti L, Jamali M, Prise KM, Michael BD, Trott KR. Genomic instability in Chinese hamster cells after exposure to X-rays of alpha particles of different mean linear energy transfer. Radiat Res 1997;147:22–8. Manti L, Jamali M, Prise KM, Michael BD, Trott KR. Genomic instability in Chinese hamster cells after exposure to X-rays of alpha particles of different mean linear energy transfer. Radiat Res 1997;147:22–8.
116.
go back to reference Little JB, Nagasawa H, Pfenning T, Vetrous H. Radiation induced genomic instability:delayed mutagenic and cytogenetic effects of X-rays and alpha particles. Radiat Res 1997;148:229–307. Little JB, Nagasawa H, Pfenning T, Vetrous H. Radiation induced genomic instability:delayed mutagenic and cytogenetic effects of X-rays and alpha particles. Radiat Res 1997;148:229–307.
117.
go back to reference Chang WP, Little JB. Delayed reproductive death as a dominant phenotype in cell clones surviving after X-irradiation. Carcinogenesis 1992;13:923–8. Chang WP, Little JB. Delayed reproductive death as a dominant phenotype in cell clones surviving after X-irradiation. Carcinogenesis 1992;13:923–8.
118.
go back to reference Marder BA, Morgan WF. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol 1993;13:6667–77. Marder BA, Morgan WF. Delayed chromosomal instability induced by DNA damage. Mol Cell Biol 1993;13:6667–77.
119.
go back to reference Rabbits TH. Chromosomal translocation in human cancer. Nature 1994;372:143–9.CrossRef Rabbits TH. Chromosomal translocation in human cancer. Nature 1994;372:143–9.CrossRef
120.
go back to reference Bedford JS, Mitchell JB, Griggs HG, Bender MA. Radiation induced cellular reproductive death and chromosome aberrations. Radiat Res 1978;76:573–86. Bedford JS, Mitchell JB, Griggs HG, Bender MA. Radiation induced cellular reproductive death and chromosome aberrations. Radiat Res 1978;76:573–86.
121.
go back to reference Sawant SG, Zheng W, Hopkins KM, Randers-Pehrson G, Lieberman HB, Hall EJ. The radiation-induced bystander effect for clonogenic survival. Radiat Res 2002;157:361–4. Sawant SG, Zheng W, Hopkins KM, Randers-Pehrson G, Lieberman HB, Hall EJ. The radiation-induced bystander effect for clonogenic survival. Radiat Res 2002;157:361–4.
122.
go back to reference Hahn P, Nevaldine B, Morgan WF. X-ray induction of methrotexate resistance due to dhfr gene amplification. Somat Cell Mol Genet 1990;16:413–23. Hahn P, Nevaldine B, Morgan WF. X-ray induction of methrotexate resistance due to dhfr gene amplification. Somat Cell Mol Genet 1990;16:413–23.
123.
go back to reference Sankaranarayanan K. Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutat Res 1991;258:75–97. Sankaranarayanan K. Ionizing radiation and genetic risks. III. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutat Res 1991;258:75–97.
124.
go back to reference Sankaranarayanan K. Ionizing radiation and genetic risks. II. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutat Res 1991;258:51–73. Sankaranarayanan K. Ionizing radiation and genetic risks. II. Nature of spontaneous and radiation-induced mutations in mammalian in vitro systems and mechanisms of induction of mutations by radiation. Mutat Res 1991;258:51–73.
125.
go back to reference Nelson SL, Giver CR, Grosovsky AJ. Spectrum of X-ray-induced mutations in the HPRT gene. Carcinogenesis 1994;15:495–502. Nelson SL, Giver CR, Grosovsky AJ. Spectrum of X-ray-induced mutations in the HPRT gene. Carcinogenesis 1994;15:495–502.
126.
go back to reference Little JB. Failla memorial lecture. Changing views of cellular radiosensitivity. Radiat Res 1994;140:299–311. Little JB. Failla memorial lecture. Changing views of cellular radiosensitivity. Radiat Res 1994;140:299–311.
127.
go back to reference Limoli CL, Morgan WF. Genomic instability. Initiation and perpetuation. In: Hagen U, Harder D, Jung H, Streffer C, eds. Radiation research 1895–1995. Proceedings of the 10th International Congress of Radiation Research, vol 2. Würzburg, Germany, 1995. Limoli CL, Morgan WF. Genomic instability. Initiation and perpetuation. In: Hagen U, Harder D, Jung H, Streffer C, eds. Radiation research 1895–1995. Proceedings of the 10th International Congress of Radiation Research, vol 2. Würzburg, Germany, 1995.
128.
go back to reference Wojcik A, Bonk K, Muller WU, Streffer C. Do DNA double strand breaks induced by Alu I lead to development of novel aberrations in the second and third post-treatment mitosis? Radiat Res 1996;145:119–27. Wojcik A, Bonk K, Muller WU, Streffer C. Do DNA double strand breaks induced by Alu I lead to development of novel aberrations in the second and third post-treatment mitosis? Radiat Res 1996;145:119–27.
129.
go back to reference Denko NC, Giaccia AJ, Stringer JR, Stambrook PG. The human Ha-ras oncogene induce genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A 1994;91:5124–8. Denko NC, Giaccia AJ, Stringer JR, Stambrook PG. The human Ha-ras oncogene induce genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A 1994;91:5124–8.
130.
go back to reference McKenna WG, Muschel RS, Gupta AK, Hahn SM, Bernhard EJ. The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 2003;22:5866–75.CrossRef McKenna WG, Muschel RS, Gupta AK, Hahn SM, Bernhard EJ. The RAS signal transduction pathway and its role in radiation sensitivity. Oncogene 2003;22:5866–75.CrossRef
131.
go back to reference Masson JY, Tarsouras MC, Stasiak AZ, Stasiak A, Shah R, Ilwraigth MC, et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Gen Dev 2001;15:3296–307.CrossRef Masson JY, Tarsouras MC, Stasiak AZ, Stasiak A, Shah R, Ilwraigth MC, et al. Identification and purification of two distinct complexes containing the five RAD51 paralogs. Gen Dev 2001;15:3296–307.CrossRef
132.
go back to reference Tateishi S, Niwa H, Miyazaki JI, Fujimoto S, Inoue H, Yomaizumi M. Enhanced genomic instability and defective postreplication repair in RD 18 knockout mouse embryonic stem cells. Mol Cell Biol 2003;23:474–81.CrossRef Tateishi S, Niwa H, Miyazaki JI, Fujimoto S, Inoue H, Yomaizumi M. Enhanced genomic instability and defective postreplication repair in RD 18 knockout mouse embryonic stem cells. Mol Cell Biol 2003;23:474–81.CrossRef
133.
go back to reference Sheen JH, Dickson RB. Overexpression of C-Myc alter G1 /S arrest following ionizing radiation. Mol Cell Biol 2002;22:1819–33.CrossRef Sheen JH, Dickson RB. Overexpression of C-Myc alter G1 /S arrest following ionizing radiation. Mol Cell Biol 2002;22:1819–33.CrossRef
134.
go back to reference Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 1996;146:247–58. Morgan WF, Day JP, Kaplan MI, McGhee EM, Limoli CL. Genomic instability induced by ionizing radiation. Radiat Res 1996;146:247–58.
135.
go back to reference Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 2000;99:8173–8.CrossRef Bassing CH, Chua KF, Sekiguchi J, Suh H, Whitlow SR, Fleming JC, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci U S A 2000;99:8173–8.CrossRef
136.
go back to reference 136. Budworth H, Dianova II, Podust VN, Dianov GL. Repair of clustered DNA lesions. J Biol Chem 2002;277:21300–5.CrossRef 136. Budworth H, Dianova II, Podust VN, Dianov GL. Repair of clustered DNA lesions. J Biol Chem 2002;277:21300–5.CrossRef
137.
go back to reference Day JP, Marder BA, Morgan WF. Telomeres and their possible role in chromosome stabilization. Environ Mol Mutagen 1993;22:245–9. Day JP, Marder BA, Morgan WF. Telomeres and their possible role in chromosome stabilization. Environ Mol Mutagen 1993;22:245–9.
138.
go back to reference Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P, et al. Chromosomal aberrations: formation, identification and distribution. Mutat Res 2002;504:17–36.CrossRefPubMed Obe G, Pfeiffer P, Savage JR, Johannes C, Goedecke W, Jeppesen P, et al. Chromosomal aberrations: formation, identification and distribution. Mutat Res 2002;504:17–36.CrossRefPubMed
139.
go back to reference Bouffler SD, Blasco MA, Cox R, Smith PJ. Telomeric sequences, radiation sensitivity and genomic instability. Int J Radiat Biol 2001;77:995–1005.CrossRef Bouffler SD, Blasco MA, Cox R, Smith PJ. Telomeric sequences, radiation sensitivity and genomic instability. Int J Radiat Biol 2001;77:995–1005.CrossRef
140.
go back to reference Ducray C, Pommier JP, Martins L, Boussin F, Sabatier L. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 1999;18:4211–23.CrossRefPubMed Ducray C, Pommier JP, Martins L, Boussin F, Sabatier L. Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 1999;18:4211–23.CrossRefPubMed
141.
go back to reference Day JP, Limoli CL, Morgan WF. Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells. Carcinogenesis 1998;19:259–65.CrossRef Day JP, Limoli CL, Morgan WF. Recombination involving interstitial telomere repeat-like sequences promotes chromosomal instability in Chinese hamster cells. Carcinogenesis 1998;19:259–65.CrossRef
142.
go back to reference Sabatier L, Lebeau J, Dutrillaux B. Chromosomal instability and alterations of telomeric repeats in irradiated human fibroblasts. Int J Radiat Biol 1994;66:611–3. Sabatier L, Lebeau J, Dutrillaux B. Chromosomal instability and alterations of telomeric repeats in irradiated human fibroblasts. Int J Radiat Biol 1994;66:611–3.
143.
go back to reference Limoli CL, Corcoran JJ, Milligan JR, Ward JF, Morgan WF. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation. Radiat Res 1999;151:677–85. Limoli CL, Corcoran JJ, Milligan JR, Ward JF, Morgan WF. Critical target and dose and dose-rate responses for the induction of chromosomal instability by ionizing radiation. Radiat Res 1999;151:677–85.
144.
go back to reference Limoli CL, Pomai B, Corcoran JJ, Giedzinsk E, Kaplan MI, Hartmann A, et al. Genomic instability induced by high and low LET ionizing radiation. Adv Space Res 2000;25:2107–17.CrossRef Limoli CL, Pomai B, Corcoran JJ, Giedzinsk E, Kaplan MI, Hartmann A, et al. Genomic instability induced by high and low LET ionizing radiation. Adv Space Res 2000;25:2107–17.CrossRef
145.
go back to reference Grosovsky A, Bethel H, Pars K, Ritter L, Giver C, Gamy S, et al. Genomic instability in human lymphoid cells exposed to 1 Gev/amu Fe ions. Phys Med 2001;17:238–40. Grosovsky A, Bethel H, Pars K, Ritter L, Giver C, Gamy S, et al. Genomic instability in human lymphoid cells exposed to 1 Gev/amu Fe ions. Phys Med 2001;17:238–40.
146.
go back to reference Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ. The bystander effect in radiation oncogenesis: I. Transformation in C3H10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res 2001;155:397–401. Sawant SG, Randers-Pehrson G, Geard CR, Brenner DJ, Hall EJ. The bystander effect in radiation oncogenesis: I. Transformation in C3H10T1/2 cells in vitro can be initiated in the unirradiated neighbors of irradiated cells. Radiat Res 2001;155:397–401.
147.
go back to reference Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiaton: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 2003;159:581–96. Morgan WF. Non-targeted and delayed effects of exposure to ionizing radiaton: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects. Radiat Res 2003;159:581–96.
148.
go back to reference Tawn EJ, Whitehouse CA, Martin FA. Sequential chromosome aberration analysis following radiotherapy. No evidence for enhanced genomic instability. Mutat Res 2000;465:45–51. Tawn EJ, Whitehouse CA, Martin FA. Sequential chromosome aberration analysis following radiotherapy. No evidence for enhanced genomic instability. Mutat Res 2000;465:45–51.
149.
go back to reference Whitehouse CA, Tawn EJ, Martin FA, Riddel AE. Chromosome aberrations in radiation workers with internal deposits of plutonium. Radiat Res 1998;150:459–68. Whitehouse CA, Tawn EJ, Martin FA, Riddel AE. Chromosome aberrations in radiation workers with internal deposits of plutonium. Radiat Res 1998;150:459–68.
150.
go back to reference Nakanishi M, Tanaka K, Shintani T, Takahashi T, Kamada N. Chromosomal instability in acute myelocytic leukemia and myelodysplastic syndrome patients among atomic bomb survivors. J Radiat Res (Tokyo) 1999;40:159–67.CrossRef Nakanishi M, Tanaka K, Shintani T, Takahashi T, Kamada N. Chromosomal instability in acute myelocytic leukemia and myelodysplastic syndrome patients among atomic bomb survivors. J Radiat Res (Tokyo) 1999;40:159–67.CrossRef
151.
go back to reference Djordjevic B. Bystander effects: a concept in need of clarification . Bioessays 2000;22:286–90. Djordjevic B. Bystander effects: a concept in need of clarification . Bioessays 2000;22:286–90.
152.
go back to reference Belyakov OV, Malcolmson AM, Folkard M, Prise KM, Michael BD. Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br J Cancer 2001;84:674–9.CrossRef Belyakov OV, Malcolmson AM, Folkard M, Prise KM, Michael BD. Direct evidence for a bystander effect of ionizing radiation in primary human fibroblasts. Br J Cancer 2001;84:674–9.CrossRef
153.
go back to reference Folakard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael B. A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles. Int J Radiat Biol 1997;72:375–85.CrossRef Folakard M, Vojnovic B, Prise KM, Bowey AG, Locke RJ, Schettino G, Michael B. A charged-particle microbeam: I. Development of an experimental system for targeting cells individually with counted particles. Int J Radiat Biol 1997;72:375–85.CrossRef
154.
go back to reference Zhou H, Randers-PehrsonG, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A 2000;97:2099–114.CrossRef Zhou H, Randers-PehrsonG, Waldren CA, Vannais D, Hall EJ, Hei TK. Induction of bystander mutagenic effect of alpha particles in mammalian cells. Proc Natl Acad Sci U S A 2000;97:2099–114.CrossRef
155.
go back to reference Belyakov OV, Folkard M, Mothersill C. A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. Br J Cancer 2003;84:767–74.CrossRef Belyakov OV, Folkard M, Mothersill C. A proliferation-dependent bystander effect in primary porcine and human urothelial explants in response to targeted irradiation. Br J Cancer 2003;84:767–74.CrossRef
156.
go back to reference Mothersill C, Seymour CB. Bystander and delayed effects after fractionated radiation exposure. Radiat Res 2002;158:626–33. Mothersill C, Seymour CB. Bystander and delayed effects after fractionated radiation exposure. Radiat Res 2002;158:626–33.
157.
go back to reference Lyng FM, Seymour CB, Mothersill C. Production of a signal by irradiated cells which lead to a response in unirradiated cells characteristic of initiation of apoptosis. Br J Cancer 2000;83:1223–30.CrossRefPubMed Lyng FM, Seymour CB, Mothersill C. Production of a signal by irradiated cells which lead to a response in unirradiated cells characteristic of initiation of apoptosis. Br J Cancer 2000;83:1223–30.CrossRefPubMed
158.
go back to reference Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS. Production of delayed death and neoplastic transformation of CGL1 cells by radiation-induced bystander effects. Radiat Res 2001;156:251–8. Lewis DA, Mayhugh BM, Qin Y, Trott K, Mendonca MS. Production of delayed death and neoplastic transformation of CGL1 cells by radiation-induced bystander effects. Radiat Res 2001;156:251–8.
159.
go back to reference Seymour CB, Mothersill C. Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Invest 1997;5:106–10.CrossRef Seymour CB, Mothersill C. Delayed expression of lethal mutations and genomic instability in the progeny of human epithelial cells that survived in a bystander-killing environment. Radiat Oncol Invest 1997;5:106–10.CrossRef
160.
go back to reference Brooks AL, Benjamin SA, Hahn FF, Brownstein DG, Griffith WC, McClellan RO. The induction of liver tumors by 239Pu citrate or 239PuO2 particles in the Chinese hamster. Radiat Res 1983;96:135–51. Brooks AL, Benjamin SA, Hahn FF, Brownstein DG, Griffith WC, McClellan RO. The induction of liver tumors by 239Pu citrate or 239PuO2 particles in the Chinese hamster. Radiat Res 1983;96:135–51.
161.
go back to reference Barcellos-Hoff MH, Brooks AL. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects and genomic instability. Radiat Res 2001;156:618–27. Barcellos-Hoff MH, Brooks AL. Extracellular signaling through the microenvironment: a hypothesis relating carcinogenesis, bystander effects and genomic instability. Radiat Res 2001;156:618–27.
162.
go back to reference Rugo RE, Secretan MB, Schiestl RH. X-radiation causes a persistent induction of reactive oxygen species and a delayed reinduction of TP53 in normal human diploid fibroblasts. Radiat Res 158:210–9. Rugo RE, Secretan MB, Schiestl RH. X-radiation causes a persistent induction of reactive oxygen species and a delayed reinduction of TP53 in normal human diploid fibroblasts. Radiat Res 158:210–9.
163.
go back to reference Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 1996;17:1633–9. Clutton SM, Townsend KM, Walker C, Ansell JD, Wright EG. Radiation-induced genomic instability and persisting oxidative stress in primary bone marrow cultures. Carcinogenesis 1996;17:1633–9.
164.
go back to reference Tulard A, Hoffschir F, Hillariet de Boisferon F, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Rad Biology Med 2003;35:68–77.CrossRef Tulard A, Hoffschir F, Hillariet de Boisferon F, Luccioni C, Bravard A. Persistent oxidative stress after ionizing radiation is involved in inherited radiosensitivity. Free Rad Biology Med 2003;35:68–77.CrossRef
165.
go back to reference Tharmickal BL, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol 2000;279:1005–28. Tharmickal BL, Fanburg BL. Reactive oxygen species in cell signaling. Am J Physiol 2000;279:1005–28.
166.
go back to reference Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal 1999;11:1–14.CrossRef Kamata H, Hirata H. Redox regulation of cellular signalling. Cell Signal 1999;11:1–14.CrossRef
167.
go back to reference Heinloth AN, Shackelford RE, Innes CL, Bennet L, Li L, Amin RP, et al. ATM-dependent and independent gene expression changes in response to oxidative stress, gamma radiation and UV radiation. Radiat Res 2003;160:273–90. Heinloth AN, Shackelford RE, Innes CL, Bennet L, Li L, Amin RP, et al. ATM-dependent and independent gene expression changes in response to oxidative stress, gamma radiation and UV radiation. Radiat Res 2003;160:273–90.
168.
go back to reference Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? Int J Radiat Biol 2003;79:15–25. Lorimore SA, Wright EG. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? Int J Radiat Biol 2003;79:15–25.
169.
go back to reference Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, et al. Chemical biology of nitric oxide. Regulation and protective and toxic mechanisms. Curr Top Cell Regul 1996;34:159–87. Wink DA, Hanbauer I, Grisham MB, Laval F, Nims RW, Laval J, et al. Chemical biology of nitric oxide. Regulation and protective and toxic mechanisms. Curr Top Cell Regul 1996;34:159–87.
170.
go back to reference Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, et al. Induction of radioresistance by nitric oxide mediated bystander effect. Radiat Res 2001;155:387–96. Matsumoto H, Hayashi S, Hatashita M, Ohnishi K, Shioura H, Ohtsubo T, et al. Induction of radioresistance by nitric oxide mediated bystander effect. Radiat Res 2001;155:387–96.
171.
go back to reference Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 2003;63:8437–42. Shao C, Stewart V, Folkard M, Michael BD, Prise KM. Nitric oxide mediated signaling in the bystander response of individually targeted glioma cells. Cancer Res 2003;63:8437–42.
172.
go back to reference Randers-Pehrson G, Geard CR, Johnson G, Elliston CD, Brener DJ. The Columbia University single-ion microbeam. Radiat Res 2001;156:210–4. Randers-Pehrson G, Geard CR, Johnson G, Elliston CD, Brener DJ. The Columbia University single-ion microbeam. Radiat Res 2001;156:210–4.
173.
go back to reference Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other non targeted effects of exposure to ionizing radiation? Oncogene 2003;22:7094–9.CrossRef Morgan WF. Is there a common mechanism underlying genomic instability, bystander effects and other non targeted effects of exposure to ionizing radiation? Oncogene 2003;22:7094–9.CrossRef
174.
go back to reference Olive PL, Banath JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004;58:331–5.CrossRef Olive PL, Banath JP. Phosphorylation of histone H2AX as a measure of radiosensitivity. Int J Radiat Oncol Biol Phys 2004;58:331–5.CrossRef
175.
go back to reference Brunner TB, Gupta AK, Shi Y, Hahn SM, Muschel RJ, McKenna WG, et al. Farnesyltransferase inhibition as radiation sensitizers. Int J Radiat Biol 2003;79:569–76.CrossRef Brunner TB, Gupta AK, Shi Y, Hahn SM, Muschel RJ, McKenna WG, et al. Farnesyltransferase inhibition as radiation sensitizers. Int J Radiat Biol 2003;79:569–76.CrossRef
176.
go back to reference Tutt A, Connor F, Bertwhistle D, Kerr P, Peacock J, Ross G, et al. Cell cycle genetic background dependence of the effect of loss of BRCA2 on ionizing radiation sensitivity. Oncogene 2003;22:2926–31.CrossRef Tutt A, Connor F, Bertwhistle D, Kerr P, Peacock J, Ross G, et al. Cell cycle genetic background dependence of the effect of loss of BRCA2 on ionizing radiation sensitivity. Oncogene 2003;22:2926–31.CrossRef
177.
go back to reference Milas L, Mason KA, Ang KK. Epidermal growth factor receptor and its inhibition in radiotherapy: in vivo findings. Int J Radiat Biol 2003;79:539–45.CrossRef Milas L, Mason KA, Ang KK. Epidermal growth factor receptor and its inhibition in radiotherapy: in vivo findings. Int J Radiat Biol 2003;79:539–45.CrossRef
178.
go back to reference Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Saito S, et al. Prediction of tumor radiosensitivity in rectal carcinoma based on p53 and Ku 70 expression. J Exp Cancer Res 2003;22:223–8. Komuro Y, Watanabe T, Hosoi Y, Matsumoto Y, Nakagawa K, Saito S, et al. Prediction of tumor radiosensitivity in rectal carcinoma based on p53 and Ku 70 expression. J Exp Cancer Res 2003;22:223–8.
179.
go back to reference Harima Y, Sawada S, Miyazaki Y, Kin K, Ishihara H, Inamura M, et al. Expression of Ku80 in cervical cancer correlates with response to radiotherapy and survival. Am J Clin Oncol 2003;26:80–5.CrossRef Harima Y, Sawada S, Miyazaki Y, Kin K, Ishihara H, Inamura M, et al. Expression of Ku80 in cervical cancer correlates with response to radiotherapy and survival. Am J Clin Oncol 2003;26:80–5.CrossRef
180.
go back to reference Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR. STAT-1 is overexpressed in tumors selected for radio resistance and confer protection from radiation in transduced sensitive cells. PNAS 2004;101:1714–9.CrossRef Khodarev NN, Beckett M, Labay E, Darga T, Roizman B, Weichselbaum RR. STAT-1 is overexpressed in tumors selected for radio resistance and confer protection from radiation in transduced sensitive cells. PNAS 2004;101:1714–9.CrossRef
Metadata
Title
Genetic and epigenetic features in radiation sensitivity
Part I: Cell signalling in radiation response
Authors
Michel H. Bourguignon
Pablo A. Gisone
Maria R. Perez
Severino Michelin
Diana Dubner
Marina Di Giorgio
Edgardo D. Carosella
Publication date
01-02-2005
Publisher
Springer-Verlag
Published in
European Journal of Nuclear Medicine and Molecular Imaging / Issue 2/2005
Print ISSN: 1619-7070
Electronic ISSN: 1619-7089
DOI
https://doi.org/10.1007/s00259-004-1730-7

Other articles of this Issue 2/2005

European Journal of Nuclear Medicine and Molecular Imaging 2/2005 Go to the issue