Skip to main content
Top
Published in: BMC Anesthesiology 1/2020

Open Access 01-12-2020 | General Anesthesia | Research article

Evaluation of alveolar recruitment maneuver on respiratory resistance during general anesthesia: a prospective observational study

Authors: Junko Nakahira, Shoko Nakano, Toshiaki Minami

Published in: BMC Anesthesiology | Issue 1/2020

Login to get access

Abstract

Background

Alveolar recruitment maneuvers enable easily reopening nonaerated lung regions via a transient elevation in transpulmonary pressure. To evaluate the effect of these maneuvers on respiratory resistance, we used an oscillatory technique during mechanical ventilation. This study was conducted to assess the effect of the alveolar recruitment maneuvers on respiratory resistance under routine anesthesia. We hypothesized that respiratory resistance at 5 Hz (R5) after the maneuver would be decreased after the lung aeration.

Methods

After receiving the ethics committee’s approval, we enrolled 33 patients who were classified with an American Society of Anesthesiologists physical status of 1, 2 or 3 and were undergoing general anesthesia for transurethral resection of a bladder tumor within a 12-month period from 2017 to 2018. The recruitment maneuver was performed 30 min after endotracheal intubation. The maneuver consisted of sustained manual inflation of the anesthesia reservoir bag to a peak inspiratory pressure of 40 cmH2O for 15 s, including 5 s of gradually increasing the peak inspiratory pressure. Respiratory resistance was measured using the forced oscillation technique before and after the maneuver, and the mean R5 was calculated during the expiratory phase. The respiratory resistance and ventilator parameter results were analyzed using paired Student’s t-tests, and p < 0.05 was considered statistically significant.

Results

We analyzed 31 patients (25 men and 6 women). R5 was 7.3 ± 1.6 cmH2O/L/sec before the recruitment maneuver during mechanical ventilation and was significantly decreased to 6.4 ± 1.7 cmH2O/L/sec after the maneuver. Peak inspiratory pressure and plateau pressure were significantly decreased, and pulmonary compliance was increased, although the values were not clinically relevant.

Conclusion

The recruitment maneuver decreased respiratory resistance and increased lung compliance during mechanical ventilation.

Trial registration

Name of registry: Japan Medical Association Center for Clinical Trials.
Trial registration number: reference JMA-IIA00136.
Date of registration: 2 September 2013.
Literature
1.
go back to reference Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef Acute Respiratory Distress Syndrome Network, Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–8.CrossRef
2.
go back to reference PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): A multicentre randomised controlled trial. Lancet. 2014;384:495–503.CrossRef PROVE Network Investigators for the Clinical Trial Network of the European Society of Anaesthesiology, Hemmes SN, Gama de Abreu M, Pelosi P, Schultz MJ. High versus low positive end-expiratory pressure during general anaesthesia for open abdominal surgery (PROVHILO trial): A multicentre randomised controlled trial. Lancet. 2014;384:495–503.CrossRef
3.
go back to reference Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123:66–78.CrossRef Serpa Neto A, Hemmes SN, Barbas CS, Beiderlinden M, Biehl M, Binnekade JM, et al. Protective versus conventional ventilation for surgery: a systematic review and individual patient data meta-analysis. Anesthesiology. 2015;123:66–78.CrossRef
4.
go back to reference Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80.CrossRef Neto AS, Hemmes SN, Barbas CS, Beiderlinden M, Fernandez-Bustamante A, Futier E, et al. Association between driving pressure and development of postoperative pulmonary complications in patients undergoing mechanical ventilation for general anaesthesia: a meta-analysis of individual patient data. Lancet Respir Med. 2016;4:272–80.CrossRef
5.
go back to reference Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: A randomized clinical trial. JAMA. 2019;321:2292–305.CrossRef Writing Committee for the PROBESE Collaborative Group of the PROtective VEntilation Network (PROVEnet) for the Clinical Trial Network of the European Society of Anaesthesiology, Bluth T, Serpa Neto A, Schultz MJ, Pelosi P, Gama de Abreu M, et al. Effect of intraoperative high positive end-expiratory pressure (PEEP) with recruitment maneuvers vs low PEEP on postoperative pulmonary complications in obese patients: A randomized clinical trial. JAMA. 2019;321:2292–305.CrossRef
6.
go back to reference Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.CrossRef Futier E, Constantin JM, Paugam-Burtz C, Pascal J, Eurin M, Neuschwander A, et al. A trial of intraoperative low-tidal-volume ventilation in abdominal surgery. N Engl J Med. 2013;369:428–37.CrossRef
7.
go back to reference Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care. Anesthesiology. 2014;121:400–8.CrossRef Futier E, Marret E, Jaber S. Perioperative positive pressure ventilation: an integrated approach to improve pulmonary care. Anesthesiology. 2014;121:400–8.CrossRef
8.
go back to reference Hedenstierna G. Small tidal volumes, positive end-expiratory pressure, and lung recruitment maneuvers during anesthesia: good or bad? Anesthesiology. 2015;123:501–3.CrossRef Hedenstierna G. Small tidal volumes, positive end-expiratory pressure, and lung recruitment maneuvers during anesthesia: good or bad? Anesthesiology. 2015;123:501–3.CrossRef
9.
go back to reference Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–91.CrossRef Rothen HU, Sporre B, Engberg G, Wegenius G, Reber A, Hedenstierna G. Prevention of atelectasis during general anaesthesia. Lancet. 1995;345:1387–91.CrossRef
10.
go back to reference Girgis K, Hamed H, Khater Y, Kacmarek RM. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51:1132–9.PubMed Girgis K, Hamed H, Khater Y, Kacmarek RM. A decremental PEEP trial identifies the PEEP level that maintains oxygenation after lung recruitment. Respir Care. 2006;51:1132–9.PubMed
11.
go back to reference Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRef Maisch S, Reissmann H, Fuellekrug B, Weismann D, Rutkowski T, Tusman G, et al. Compliance and dead space fraction indicate an optimal level of positive end-expiratory pressure after recruitment in anesthetized patients. Anesth Analg. 2008;106:175–81.CrossRef
12.
go back to reference Weingarten TN, Whalen FX, Warner DO, Gajic O, Schears GJ, Snyder MR, et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2010;104:16–22.CrossRef Weingarten TN, Whalen FX, Warner DO, Gajic O, Schears GJ, Snyder MR, et al. Comparison of two ventilatory strategies in elderly patients undergoing major abdominal surgery. Br J Anaesth. 2010;104:16–22.CrossRef
13.
go back to reference Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118:1307–21.CrossRef Severgnini P, Selmo G, Lanza C, Chiesa A, Frigerio A, Bacuzzi A, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology. 2013;118:1307–21.CrossRef
14.
go back to reference Acosta CM, Sara T, Carpinella M, Volpicelli G, Ricci L, Poliotto S, et al. Lung recruitment prevents collapse during laparoscopy in children: a randomised controlled trial. Eur J Anaesthesiol. 2018;35:573–80.CrossRef Acosta CM, Sara T, Carpinella M, Volpicelli G, Ricci L, Poliotto S, et al. Lung recruitment prevents collapse during laparoscopy in children: a randomised controlled trial. Eur J Anaesthesiol. 2018;35:573–80.CrossRef
15.
go back to reference Lovas A, Németh MF, Trásy D, Molnár Z. Lung recruitment can improve oxygenation in patients ventilated in continuous positive airway pressure/pressure support mode. Front Med (Lausanne). 2015;2:25. Lovas A, Németh MF, Trásy D, Molnár Z. Lung recruitment can improve oxygenation in patients ventilated in continuous positive airway pressure/pressure support mode. Front Med (Lausanne). 2015;2:25.
16.
go back to reference Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth. 2017;118:317–34.CrossRef Miskovic A, Lumb AB. Postoperative pulmonary complications. Br J Anaesth. 2017;118:317–34.CrossRef
17.
go back to reference Tusman G, Böhm SH, Melkun F, Staltari D, Quinzio C, Nador C, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73:1204–9.CrossRef Tusman G, Böhm SH, Melkun F, Staltari D, Quinzio C, Nador C, et al. Alveolar recruitment strategy increases arterial oxygenation during one-lung ventilation. Ann Thorac Surg. 2002;73:1204–9.CrossRef
18.
go back to reference Nakahira J, Nakano S, Sawai T, Ishio J, Ono N, Minami T. Factors causing post-anesthetic high respiratory resistance in patients undergoing transurethral resection of bladder tumors. Anesth Pain Med. 2017;7:e44553.CrossRef Nakahira J, Nakano S, Sawai T, Ishio J, Ono N, Minami T. Factors causing post-anesthetic high respiratory resistance in patients undergoing transurethral resection of bladder tumors. Anesth Pain Med. 2017;7:e44553.CrossRef
19.
go back to reference Nakano S, Nakahira J, Kuzukawa Y, Sawai T, Minami T. The effects of endotracheal tube and i-gel® supraglottic airway device on respiratory impedance: a prospective observational study. Anesth Pain Med. 2016;7:e42964.CrossRef Nakano S, Nakahira J, Kuzukawa Y, Sawai T, Minami T. The effects of endotracheal tube and i-gel® supraglottic airway device on respiratory impedance: a prospective observational study. Anesth Pain Med. 2016;7:e42964.CrossRef
20.
go back to reference Nakano S, Nakahira J, Sawai T, Kuzukawa Y, Ishio J, Minami T. Perioperative evaluation of respiratory impedance using the forced oscillation technique: a prospective observational study. BMC Anesthesiol. 2016;16:32.CrossRef Nakano S, Nakahira J, Sawai T, Kuzukawa Y, Ishio J, Minami T. Perioperative evaluation of respiratory impedance using the forced oscillation technique: a prospective observational study. BMC Anesthesiol. 2016;16:32.CrossRef
21.
go back to reference Kuzukawa Y, Nakahira J, Sawai T, Minami T. A perioperative evaluation of respiratory mechanics using the forced oscillation technique. Anesth Analg. 2015;121:1202–6.CrossRef Kuzukawa Y, Nakahira J, Sawai T, Minami T. A perioperative evaluation of respiratory mechanics using the forced oscillation technique. Anesth Analg. 2015;121:1202–6.CrossRef
22.
go back to reference Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184:602–15.CrossRef Dweik RA, Boggs PB, Erzurum SC, Irvin CG, Leigh MW, Lundberg JO, et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am J Respir Crit Care Med. 2011;184:602–15.CrossRef
23.
go back to reference Peslin R, Felicio da Silva J, Duvivier C, Chabot F. Respiratory mechanics studied by forced oscillations during artificial ventilation. Eur Respir J. 1993;6:772–84.PubMed Peslin R, Felicio da Silva J, Duvivier C, Chabot F. Respiratory mechanics studied by forced oscillations during artificial ventilation. Eur Respir J. 1993;6:772–84.PubMed
24.
go back to reference Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, et al. A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;67:999–1008.CrossRef Jaber S, Coisel Y, Chanques G, Futier E, Constantin JM, Michelet P, et al. A multicentre observational study of intra-operative ventilatory management during general anaesthesia: tidal volumes and relation to body weight. Anaesthesia. 2012;67:999–1008.CrossRef
25.
go back to reference Chiumello D, Algieri I, Grasso S, Terragni P, Pelosi P. Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia. Minerva Anestesiol. 2016;82:210–20.PubMed Chiumello D, Algieri I, Grasso S, Terragni P, Pelosi P. Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia. Minerva Anestesiol. 2016;82:210–20.PubMed
26.
go back to reference Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–7.CrossRef Biais M, Lanchon R, Sesay M, Le Gall L, Pereira B, Futier E, et al. Changes in stroke volume induced by lung recruitment maneuver predict fluid responsiveness in mechanically ventilated patients in the operating room. Anesthesiology. 2017;126:260–7.CrossRef
27.
go back to reference Rothen HU, Neumann P, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Dynamics of re-expansion of atelectasis during general anaesthesia. Br J Anaesth. 1999;82:551–6.CrossRef Rothen HU, Neumann P, Berglund JE, Valtysson J, Magnusson A, Hedenstierna G. Dynamics of re-expansion of atelectasis during general anaesthesia. Br J Anaesth. 1999;82:551–6.CrossRef
28.
go back to reference Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg. 2015;121:383–91.CrossRef Thonnerieux M, Alexander B, Binet C, Obadia JF, Bastien O, Desebbe O. The ability of esCCO and ECOM monitors to measure trends in cardiac output during alveolar recruitment maneuver after cardiac surgery: a comparison with the pulmonary thermodilution method. Anesth Analg. 2015;121:383–91.CrossRef
29.
go back to reference Futier E, Constantin JM, Jaber S. Protective lung ventilation in operating room: a systematic review. Minerva Anestesiol. 2014;80:726–35.PubMed Futier E, Constantin JM, Jaber S. Protective lung ventilation in operating room: a systematic review. Minerva Anestesiol. 2014;80:726–35.PubMed
30.
go back to reference Phelps P, Cakmakkaya OS, Apfel CC, Radke OC. A simple clinical maneuver to reduce laparoscopy-induced shoulder pain: a randomized controlled trial. Obstet Gynecol. 2008;111:1155–60.CrossRef Phelps P, Cakmakkaya OS, Apfel CC, Radke OC. A simple clinical maneuver to reduce laparoscopy-induced shoulder pain: a randomized controlled trial. Obstet Gynecol. 2008;111:1155–60.CrossRef
31.
go back to reference Tsai HW, Wang PH, Yen MS, Chao KC, Hsu TF, Chen YJ. Prevention of postlaparoscopic shoulder and upper abdominal pain: a randomized controlled trial. Obstet Gynecol. 2013;121:526–31.CrossRef Tsai HW, Wang PH, Yen MS, Chao KC, Hsu TF, Chen YJ. Prevention of postlaparoscopic shoulder and upper abdominal pain: a randomized controlled trial. Obstet Gynecol. 2013;121:526–31.CrossRef
32.
go back to reference Sharami SH, Sharami MB, Abdollahzadeh M, Keyvan A. Randomised clinical trial of the influence of pulmonary recruitment manoeuvre on reducing shoulder pain after laparoscopy. J Obstet Gynaecol. 2010;30:505–10.CrossRef Sharami SH, Sharami MB, Abdollahzadeh M, Keyvan A. Randomised clinical trial of the influence of pulmonary recruitment manoeuvre on reducing shoulder pain after laparoscopy. J Obstet Gynaecol. 2010;30:505–10.CrossRef
Metadata
Title
Evaluation of alveolar recruitment maneuver on respiratory resistance during general anesthesia: a prospective observational study
Authors
Junko Nakahira
Shoko Nakano
Toshiaki Minami
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Anesthesiology / Issue 1/2020
Electronic ISSN: 1471-2253
DOI
https://doi.org/10.1186/s12871-020-01182-9

Other articles of this Issue 1/2020

BMC Anesthesiology 1/2020 Go to the issue