Skip to main content
Top
Published in: Journal of the Association for Research in Otolaryngology 5/2022

24-08-2022 | Gene Therapy in Oncology | Review

Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss

Authors: Fan Wu, Kumar Sambamurti, Suhua Sha

Published in: Journal of the Association for Research in Otolaryngology | Issue 5/2022

Login to get access

Abstract

Adeno-associated viruses (AAVs) are viral vectors that offer an excellent platform for gene therapy due to their safety profile, persistent gene expression in non-dividing cells, target cell specificity, lack of pathogenicity, and low immunogenicity. Recently, gene therapy for genetic hearing loss with AAV transduction has shown promise in animal models. However, AAV transduction for gene silencing or expression to prevent or manage acquired hearing loss is limited. This review provides an overview of AAV as a leading gene delivery vector for treating genetic hearing loss in animal models. We highlight the advantages and shortcomings of AAV for investigating the mechanisms and preventing acquired hearing loss. We predict that AAV-mediated gene manipulation will be able to prevent acquired hearing loss.
Literature
2.
go back to reference Kros CJ, Steyger PS (2019) Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med 9 Kros CJ, Steyger PS (2019) Aminoglycoside- and cisplatin-induced ototoxicity: mechanisms and otoprotective strategies. Cold Spring Harb Perspect Med 9
3.
go back to reference Sha SH, Schacht J (2017) Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 26:85–96PubMedCrossRef Sha SH, Schacht J (2017) Emerging therapeutic interventions against noise-induced hearing loss. Expert Opin Investig Drugs 26:85–96PubMedCrossRef
4.
go back to reference Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20PubMedCrossRef Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC (2019) Primary neural degeneration in the human cochlea: evidence for hidden hearing loss in the aging ear. Neuroscience 407:8–20PubMedCrossRef
5.
go back to reference Brown CS, Emmett SD, Robler SK, Tucci DL (2018) Global hearing loss prevention. Otolaryngol Clin North Am 51:575–592PubMedCrossRef Brown CS, Emmett SD, Robler SK, Tucci DL (2018) Global hearing loss prevention. Otolaryngol Clin North Am 51:575–592PubMedCrossRef
6.
go back to reference Guo J, Chai R, Li H, Sun S (2019) Protection of hair cells from ototoxic drug-induced hearing loss. Adv Exp Med Biol 1130:17–36PubMedCrossRef Guo J, Chai R, Li H, Sun S (2019) Protection of hair cells from ototoxic drug-induced hearing loss. Adv Exp Med Biol 1130:17–36PubMedCrossRef
7.
go back to reference Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A (2019) Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med 11 Nyberg S, Abbott NJ, Shi X, Steyger PS, Dabdoub A (2019) Delivery of therapeutics to the inner ear: the challenge of the blood-labyrinth barrier. Sci Transl Med 11
8.
go back to reference Akil O, Dyka F, Calvet C, Emptoz A et al (2019) Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A 116:4496–4501PubMedPubMedCentralCrossRef Akil O, Dyka F, Calvet C, Emptoz A et al (2019) Dual AAV-mediated gene therapy restores hearing in a DFNB9 mouse model. Proc Natl Acad Sci U S A 116:4496–4501PubMedPubMedCentralCrossRef
9.
go back to reference Gyorgy B, Nist-Lund C, Pan B et al (2019) Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 25:1123–1130PubMedPubMedCentralCrossRef Gyorgy B, Nist-Lund C, Pan B et al (2019) Allele-specific gene editing prevents deafness in a model of dominant progressive hearing loss. Nat Med 25:1123–1130PubMedPubMedCentralCrossRef
10.
go back to reference Wu J, Solanes P, Nist-Lund C, Spataro S, Shubina-Oleinik O, Marcovich I, Goldberg H, Schneider BL, Holt JR (2021) Single and dual vector gene therapy with AAV9-PHP.B rescues hearing in Tmc1 mutant mice. Mol Ther 29:973–988PubMedCrossRef Wu J, Solanes P, Nist-Lund C, Spataro S, Shubina-Oleinik O, Marcovich I, Goldberg H, Schneider BL, Holt JR (2021) Single and dual vector gene therapy with AAV9-PHP.B rescues hearing in Tmc1 mutant mice. Mol Ther 29:973–988PubMedCrossRef
11.
go back to reference Xue Y, Hu X, Wang D et al (2022) Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol Ther 30:105–118PubMedCrossRef Xue Y, Hu X, Wang D et al (2022) Gene editing in a Myo6 semi-dominant mouse model rescues auditory function. Mol Ther 30:105–118PubMedCrossRef
12.
go back to reference Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Hum Gene Ther 26:257–265PubMedPubMedCentralCrossRef Hastie E, Samulski RJ (2015) Adeno-associated virus at 50: a golden anniversary of discovery, research, and gene therapy success—a personal perspective. Hum Gene Ther 26:257–265PubMedPubMedCentralCrossRef
14.
15.
go back to reference Bankoti K, Generotti C, Hwa T, Wang L, O’Malley BW Jr, Li D (2021) Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 21:209–236PubMedPubMedCentralCrossRef Bankoti K, Generotti C, Hwa T, Wang L, O’Malley BW Jr, Li D (2021) Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. Mol Ther Methods Clin Dev 21:209–236PubMedPubMedCentralCrossRef
17.
go back to reference Hill K, Yuan H, Wang X, Sha SH (2016) Noise-induced loss of hair cells and cochlear synaptopathy are mediated by the activation of AMPK. J Neurosci 36:7497–7510PubMedPubMedCentralCrossRef Hill K, Yuan H, Wang X, Sha SH (2016) Noise-induced loss of hair cells and cochlear synaptopathy are mediated by the activation of AMPK. J Neurosci 36:7497–7510PubMedPubMedCentralCrossRef
18.
go back to reference Maeda Y, Sheffield AM, Smith RJH (2009) Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 66:13–36PubMedPubMedCentral Maeda Y, Sheffield AM, Smith RJH (2009) Therapeutic regulation of gene expression in the inner ear using RNA interference. Adv Otorhinolaryngol 66:13–36PubMedPubMedCentral
19.
go back to reference Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal 13:589–598PubMedPubMedCentralCrossRef Mukherjea D, Jajoo S, Kaur T, Sheehan KE, Ramkumar V, Rybak LP (2010) Transtympanic administration of short interfering (si)RNA for the NOX3 isoform of NADPH oxidase protects against cisplatin-induced hearing loss in the rat. Antioxid Redox Signal 13:589–598PubMedPubMedCentralCrossRef
20.
go back to reference Oishi N, Chen FQ, Zheng HW, Sha SH (2013) Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear Res 296:36–41PubMedCrossRef Oishi N, Chen FQ, Zheng HW, Sha SH (2013) Intra-tympanic delivery of short interfering RNA into the adult mouse cochlea. Hear Res 296:36–41PubMedCrossRef
21.
go back to reference Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489PubMedCrossRef Tanaka M, Asaoka M, Yanagawa Y, Hirashima N (2011) Long-term gene-silencing effects of siRNA introduced by single-cell electroporation into postmitotic CNS neurons. Neurochem Res 36:1482–1489PubMedCrossRef
22.
go back to reference Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756PubMedCrossRef Atchison RW, Casto BC, Hammon WM (1965) Adenovirus-associated defective virus particles. Science 149:754–756PubMedCrossRef
23.
go back to reference Hoggan MD, Blacklow NR, Rowe WP (1966) Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55:1467–1474PubMedPubMedCentralCrossRef Hoggan MD, Blacklow NR, Rowe WP (1966) Studies of small DNA viruses found in various adenovirus preparations: physical, biological, and immunological characteristics. Proc Natl Acad Sci U S A 55:1467–1474PubMedPubMedCentralCrossRef
24.
go back to reference Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1:427–451PubMedCrossRef Samulski RJ, Muzyczka N (2014) AAV-mediated gene therapy for research and therapeutic purposes. Annu Rev Virol 1:427–451PubMedCrossRef
25.
go back to reference Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410PubMedPubMedCentralCrossRef Xie Q, Bu W, Bhatia S, Hare J, Somasundaram T, Azzi A, Chapman MS (2002) The atomic structure of adeno-associated virus (AAV-2), a vector for human gene therapy. Proc Natl Acad Sci U S A 99:10405–10410PubMedPubMedCentralCrossRef
26.
go back to reference Sonntag F, Köther K, Schmidt K et al (2011) The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J Virol 85:12686–12697PubMedPubMedCentralCrossRef Sonntag F, Köther K, Schmidt K et al (2011) The assembly-activating protein promotes capsid assembly of different adeno-associated virus serotypes. J Virol 85:12686–12697PubMedPubMedCentralCrossRef
27.
go back to reference Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q, Chapman MS, Nakai H (2017) Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol 91 Earley LF, Powers JM, Adachi K, Baumgart JT, Meyer NL, Xie Q, Chapman MS, Nakai H (2017) Adeno-associated virus (AAV) assembly-activating protein is not an essential requirement for capsid assembly of AAV serotypes 4, 5, and 11. J Virol 91
28.
go back to reference Grimwood J, Gordon LA, Olsen A et al (2004) The DNA sequence and biology of human chromosome 19. Nature 428:529–535PubMedCrossRef Grimwood J, Gordon LA, Olsen A et al (2004) The DNA sequence and biology of human chromosome 19. Nature 428:529–535PubMedCrossRef
29.
go back to reference Tullis GE, Shenk T (2000) Efficient replication of adeno-associated virus type 2 vectors: a cis-acting element outside of the terminal repeats and a minimal size. J Virol 74:11511–11521PubMedPubMedCentralCrossRef Tullis GE, Shenk T (2000) Efficient replication of adeno-associated virus type 2 vectors: a cis-acting element outside of the terminal repeats and a minimal size. J Virol 74:11511–11521PubMedPubMedCentralCrossRef
30.
go back to reference Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388PubMedPubMedCentralCrossRef Gao G, Vandenberghe LH, Alvira MR, Lu Y, Calcedo R, Zhou X, Wilson JM (2004) Clades of adeno-associated viruses are widely disseminated in human tissues. J Virol 78:6381–6388PubMedPubMedCentralCrossRef
33.
go back to reference Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327PubMedCrossRef Wu Z, Asokan A, Samulski RJ (2006) Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther 14:316–327PubMedCrossRef
34.
go back to reference Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92PubMedCrossRef Agbandje-McKenna M, Kleinschmidt J (2011) AAV capsid structure and cell interactions. Methods Mol Biol 807:47–92PubMedCrossRef
35.
go back to reference Ivanchenko MV, Hanlon KS, Hathaway DM, Klein AJ, Peters CW, Li Y, Tamvakologos PI, Nammour J, Maguire CA, Corey DP (2021) AAV-S: a versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther Methods Clin Dev 21:382–398PubMedPubMedCentralCrossRef Ivanchenko MV, Hanlon KS, Hathaway DM, Klein AJ, Peters CW, Li Y, Tamvakologos PI, Nammour J, Maguire CA, Corey DP (2021) AAV-S: a versatile capsid variant for transduction of mouse and primate inner ear. Mol Ther Methods Clin Dev 21:382–398PubMedPubMedCentralCrossRef
36.
go back to reference Lee EJ, Guenther CM, Suh J (2018) Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Curr Opin Biomed Eng 7:58–63PubMedPubMedCentralCrossRef Lee EJ, Guenther CM, Suh J (2018) Adeno-associated virus (AAV) vectors: rational design strategies for capsid engineering. Curr Opin Biomed Eng 7:58–63PubMedPubMedCentralCrossRef
37.
go back to reference Vozenilek AE, Blackburn CMR, Schilke RM, Chandran S, Castore R, Klein RL, Woolard MD (2018) AAV8-mediated overexpression of mPCSK9 in liver differs between male and female mice. Atherosclerosis 278:66–72PubMedPubMedCentralCrossRef Vozenilek AE, Blackburn CMR, Schilke RM, Chandran S, Castore R, Klein RL, Woolard MD (2018) AAV8-mediated overexpression of mPCSK9 in liver differs between male and female mice. Atherosclerosis 278:66–72PubMedPubMedCentralCrossRef
38.
go back to reference Moretti A, Fonteyne L, Giesert F et al (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26:207–214PubMedPubMedCentralCrossRef Moretti A, Fonteyne L, Giesert F et al (2020) Somatic gene editing ameliorates skeletal and cardiac muscle failure in pig and human models of Duchenne muscular dystrophy. Nat Med 26:207–214PubMedPubMedCentralCrossRef
39.
go back to reference Ikeda Y, Sun Z, Ru X, Vandenberghe LH, Humphreys BD (2018) Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector. J Am Soc Nephrol 29:2287–2297PubMedPubMedCentralCrossRef Ikeda Y, Sun Z, Ru X, Vandenberghe LH, Humphreys BD (2018) Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector. J Am Soc Nephrol 29:2287–2297PubMedPubMedCentralCrossRef
40.
go back to reference Carvalho LS, Xiao R, Wassmer SJ et al (2018) Synthetic adeno-associated viral vector efficiently targets mouse and nonhuman primate retina in vivo. Hum Gene Ther 29:771–784PubMedPubMedCentralCrossRef Carvalho LS, Xiao R, Wassmer SJ et al (2018) Synthetic adeno-associated viral vector efficiently targets mouse and nonhuman primate retina in vivo. Hum Gene Ther 29:771–784PubMedPubMedCentralCrossRef
41.
go back to reference Landegger LD, Pan B, Askew C et al (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35:280–284PubMedPubMedCentralCrossRef Landegger LD, Pan B, Askew C et al (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35:280–284PubMedPubMedCentralCrossRef
42.
go back to reference Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR (2020) Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 326:113167PubMedCrossRef Chiha W, Bartlett CA, Petratos S, Fitzgerald M, Harvey AR (2020) Intravitreal application of AAV-BDNF or mutant AAV-CRMP2 protects retinal ganglion cells and stabilizes axons and myelin after partial optic nerve injury. Exp Neurol 326:113167PubMedCrossRef
44.
go back to reference Cronin T, Vandenberghe LH, Hantz P et al (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 6:1175–1190PubMedPubMedCentralCrossRef Cronin T, Vandenberghe LH, Hantz P et al (2014) Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 6:1175–1190PubMedPubMedCentralCrossRef
45.
go back to reference Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176 Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L, Merigan WH, Flannery JG, Schaffer DV (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5:189ra176
46.
go back to reference Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW (2019) AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 10:427 Isgrig K, McDougald DS, Zhu J, Wang HJ, Bennett J, Chien WW (2019) AAV2.7m8 is a powerful viral vector for inner ear gene therapy. Nat Commun 10:427
48.
go back to reference Morgenstern JP, Land H (1990) A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res 18:1068PubMedPubMedCentralCrossRef Morgenstern JP, Land H (1990) A series of mammalian expression vectors and characterisation of their expression of a reporter gene in stably and transiently transfected cells. Nucleic Acids Res 18:1068PubMedPubMedCentralCrossRef
49.
go back to reference Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem 267:5665–5678PubMedCrossRef Van Craenenbroeck K, Vanhoenacker P, Haegeman G (2000) Episomal vectors for gene expression in mammalian cells. Eur J Biochem 267:5665–5678PubMedCrossRef
50.
go back to reference Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153PubMedPubMedCentralCrossRef Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22:1143–1153PubMedPubMedCentralCrossRef
51.
go back to reference Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5:e10611PubMedPubMedCentralCrossRef Qin JY, Zhang L, Clift KL, Hulur I, Xiang AP, Ren BZ, Lahn BT (2010) Systematic comparison of constitutive promoters and the doxycycline-inducible promoter. PLoS ONE 5:e10611PubMedPubMedCentralCrossRef
52.
go back to reference Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19:49–57PubMedPubMedCentral Powell SK, Rivera-Soto R, Gray SJ (2015) Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 19:49–57PubMedPubMedCentral
53.
go back to reference Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 21:1259–1271PubMedPubMedCentralCrossRef Lock M, Alvira M, Vandenberghe LH, Samanta A, Toelen J, Debyser Z, Wilson JM (2010) Rapid, simple, and versatile manufacturing of recombinant adeno-associated viral vectors at scale. Hum Gene Ther 21:1259–1271PubMedPubMedCentralCrossRef
54.
go back to reference Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030PubMedPubMedCentralCrossRef Cecchini S, Virag T, Kotin RM (2011) Reproducible high yields of recombinant adeno-associated virus produced using invertebrate cells in 0.02- to 200-liter cultures. Hum Gene Ther 22:1021–1030PubMedPubMedCentralCrossRef
55.
go back to reference Thorne BA, Takeya RK, Peluso RW (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20:707–714PubMedCrossRef Thorne BA, Takeya RK, Peluso RW (2009) Manufacturing recombinant adeno-associated viral vectors from producer cell clones. Hum Gene Ther 20:707–714PubMedCrossRef
57.
go back to reference Potter M, Lins B, Mietzsch M, Heilbronn R, Van Vliet K, Chipman P, Agbandje-McKenna M, Cleaver BD, Clement N, Byrne BJ, Zolotukhin S (2014) A simplified purification protocol for recombinant adeno-associated virus vectors. Mol Ther Methods Clin Dev 1:14034PubMedPubMedCentralCrossRef Potter M, Lins B, Mietzsch M, Heilbronn R, Van Vliet K, Chipman P, Agbandje-McKenna M, Cleaver BD, Clement N, Byrne BJ, Zolotukhin S (2014) A simplified purification protocol for recombinant adeno-associated virus vectors. Mol Ther Methods Clin Dev 1:14034PubMedPubMedCentralCrossRef
58.
59.
60.
go back to reference Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA (1998) The kinetics of rAAV integration in the liver. Nat Genet 19:13–15PubMedCrossRef Miao CH, Snyder RO, Schowalter DB, Patijn GA, Donahue B, Winther B, Kay MA (1998) The kinetics of rAAV integration in the liver. Nat Genet 19:13–15PubMedCrossRef
61.
go back to reference Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614PubMedPubMedCentralCrossRef Nakai H, Wu X, Fuess S, Storm TA, Munroe D, Montini E, Burgess SM, Grompe M, Kay MA (2005) Large-scale molecular characterization of adeno-associated virus vector integration in mouse liver. J Virol 79:3606–3614PubMedPubMedCentralCrossRef
62.
go back to reference Hüser D, Gogol-Döring A, Lutter T, Weger S, Winter K, Hammer E-M, Cathomen T, Reinert K, Heilbronn R (2010) Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 6:e1000985–e1000985PubMedPubMedCentralCrossRef Hüser D, Gogol-Döring A, Lutter T, Weger S, Winter K, Hammer E-M, Cathomen T, Reinert K, Heilbronn R (2010) Integration preferences of wildtype AAV-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog 6:e1000985–e1000985PubMedPubMedCentralCrossRef
63.
go back to reference Chamberlain K, Riyad JM, Weber T (2016) Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods 27:1–12PubMedPubMedCentralCrossRef Chamberlain K, Riyad JM, Weber T (2016) Expressing transgenes that exceed the packaging capacity of adeno-associated virus capsids. Hum Gene Ther Methods 27:1–12PubMedPubMedCentralCrossRef
64.
go back to reference Akil O (2020) Dual and triple AAV delivery of large therapeutic gene sequences into the inner ear. Hear Res 394:107912PubMedCrossRef Akil O (2020) Dual and triple AAV delivery of large therapeutic gene sequences into the inner ear. Hear Res 394:107912PubMedCrossRef
65.
go back to reference Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G (2021) Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 131 Muhuri M, Maeda Y, Ma H, Ram S, Fitzgerald KA, Tai PW, Gao G (2021) Overcoming innate immune barriers that impede AAV gene therapy vectors. J Clin Invest 131
66.
go back to reference Ronzitti G, Gross D-A, Mingozzi F (2020) Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol 11 Ronzitti G, Gross D-A, Mingozzi F (2020) Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol 11
67.
go back to reference Sun JY, Anand-Jawa V, Chatterjee S, Wong KK (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10:964–976PubMedCrossRef Sun JY, Anand-Jawa V, Chatterjee S, Wong KK (2003) Immune responses to adeno-associated virus and its recombinant vectors. Gene Ther 10:964–976PubMedCrossRef
68.
go back to reference Martino AT, Markusic DM (2020) Immune response mechanisms against AAV vectors in animal models. Mol Ther Methods Clin Dev 17:198–208PubMedCrossRef Martino AT, Markusic DM (2020) Immune response mechanisms against AAV vectors in animal models. Mol Ther Methods Clin Dev 17:198–208PubMedCrossRef
70.
go back to reference Wang L, Calcedo R, Bell P, Lin J, Grant RL, Siegel DL, Wilson JM (2011) Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 22:1389–1401PubMedPubMedCentralCrossRef Wang L, Calcedo R, Bell P, Lin J, Grant RL, Siegel DL, Wilson JM (2011) Impact of pre-existing immunity on gene transfer to nonhuman primate liver with adeno-associated virus 8 vectors. Hum Gene Ther 22:1389–1401PubMedPubMedCentralCrossRef
71.
go back to reference Zaiss AK, Cotter MJ, White LR, Clark SA, Wong NC, Holers VM, Bartlett JS, Muruve DA (2008) Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 82:2727–2740PubMedPubMedCentralCrossRef Zaiss AK, Cotter MJ, White LR, Clark SA, Wong NC, Holers VM, Bartlett JS, Muruve DA (2008) Complement is an essential component of the immune response to adeno-associated virus vectors. J Virol 82:2727–2740PubMedPubMedCentralCrossRef
72.
go back to reference Rabinowitz J, Chan YK, Samulski RJ (2019) Adeno-associated virus (AAV) versus immune response. Viruses 11 Rabinowitz J, Chan YK, Samulski RJ (2019) Adeno-associated virus (AAV) versus immune response. Viruses 11
73.
go back to reference Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524PubMedPubMedCentralCrossRef Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524PubMedPubMedCentralCrossRef
75.
go back to reference Hashimoto K, Hickman TT, Suzuki J, Ji L, Kohrman DC, Corfas G, Liberman MC (2019) Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3. Sci Rep 9:15362PubMedPubMedCentralCrossRef Hashimoto K, Hickman TT, Suzuki J, Ji L, Kohrman DC, Corfas G, Liberman MC (2019) Protection from noise-induced cochlear synaptopathy by virally mediated overexpression of NT3. Sci Rep 9:15362PubMedPubMedCentralCrossRef
76.
go back to reference Ulfendahl M, Scarfone E, Flock A, Le Calvez S, Conradi P (2000) Perilymphatic fluid compartments and intercellular spaces of the inner ear and the organ of Corti. Neuroimage 12:307–313PubMedCrossRef Ulfendahl M, Scarfone E, Flock A, Le Calvez S, Conradi P (2000) Perilymphatic fluid compartments and intercellular spaces of the inner ear and the organ of Corti. Neuroimage 12:307–313PubMedCrossRef
77.
go back to reference Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L (2017) Inner ear ossification and mineralization kinetics in human embryonic development — microtomographic and histomorphological study. Sci Rep 7:4825PubMedPubMedCentralCrossRef Richard C, Courbon G, Laroche N, Prades JM, Vico L, Malaval L (2017) Inner ear ossification and mineralization kinetics in human embryonic development — microtomographic and histomorphological study. Sci Rep 7:4825PubMedPubMedCentralCrossRef
78.
go back to reference Yoshimura H, Shibata SB, Ranum PT, Smith RJH (2018) Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 8:2980PubMedPubMedCentralCrossRef Yoshimura H, Shibata SB, Ranum PT, Smith RJH (2018) Enhanced viral-mediated cochlear gene delivery in adult mice by combining canal fenestration with round window membrane inoculation. Sci Rep 8:2980PubMedPubMedCentralCrossRef
79.
go back to reference Jie H, Tao S, Liu L, Xia L, Charko A, Yu Z, Bance M, Yin S, Robertson GS, Wang J (2015) Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Ther 22:546–552PubMedCrossRef Jie H, Tao S, Liu L, Xia L, Charko A, Yu Z, Bance M, Yin S, Robertson GS, Wang J (2015) Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Ther 22:546–552PubMedCrossRef
80.
go back to reference Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL (2015) Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope 125:2557–2564PubMedCrossRef Chien WW, McDougald DS, Roy S, Fitzgerald TS, Cunningham LL (2015) Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope 125:2557–2564PubMedCrossRef
81.
go back to reference Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen ZY (2016) Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther 27:687–699PubMedPubMedCentralCrossRef Shu Y, Tao Y, Wang Z, Tang Y, Li H, Dai P, Gao G, Chen ZY (2016) Identification of adeno-associated viral vectors that target neonatal and adult mammalian inner ear cell subtypes. Hum Gene Ther 27:687–699PubMedPubMedCentralCrossRef
82.
go back to reference Omichi R, Yoshimura H, Shibata SB, Vandenberghe LH, Smith RJH (2020) Hair cell transduction efficiency of single- and dual-AAV serotypes in adult murine cochleae. Mol Ther Methods Clin Dev 17:1167–1177PubMedPubMedCentralCrossRef Omichi R, Yoshimura H, Shibata SB, Vandenberghe LH, Smith RJH (2020) Hair cell transduction efficiency of single- and dual-AAV serotypes in adult murine cochleae. Mol Ther Methods Clin Dev 17:1167–1177PubMedPubMedCentralCrossRef
83.
84.
go back to reference Tao Y, Huang M, Shu Y et al (2018) Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther 29:492–506PubMedPubMedCentralCrossRef Tao Y, Huang M, Shu Y et al (2018) Delivery of adeno-associated virus vectors in adult mammalian inner-ear cell subtypes without auditory dysfunction. Hum Gene Ther 29:492–506PubMedPubMedCentralCrossRef
85.
go back to reference Suzuki M, Kaga K (1999) Development of blood-labyrinth barrier in the semicircular canal ampulla of the rat. Hear Res 129:27–34PubMedCrossRef Suzuki M, Kaga K (1999) Development of blood-labyrinth barrier in the semicircular canal ampulla of the rat. Hear Res 129:27–34PubMedCrossRef
86.
go back to reference Suzuki M, Yamasoba T, Kaga K (1998) Development of the blood-labyrinth barrier in the rat. Hear Res 116:107–112PubMedCrossRef Suzuki M, Yamasoba T, Kaga K (1998) Development of the blood-labyrinth barrier in the rat. Hear Res 116:107–112PubMedCrossRef
87.
go back to reference Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, Abbas PJ, Holt JR, Smith RJH (2016) RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 98:1101–1113PubMedPubMedCentralCrossRef Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, Abbas PJ, Holt JR, Smith RJH (2016) RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 98:1101–1113PubMedPubMedCentralCrossRef
88.
go back to reference Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X (2013) Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 15:123–133PubMedCrossRef Wang Y, Sun Y, Chang Q, Ahmad S, Zhou B, Kim Y, Li H, Lin X (2013) Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 15:123–133PubMedCrossRef
89.
go back to reference Gyorgy B, Meijer EJ, Ivanchenko MV et al (2019) Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Methods Clin Dev 13:1–13PubMedCrossRef Gyorgy B, Meijer EJ, Ivanchenko MV et al (2019) Gene transfer with AAV9-PHP.B rescues hearing in a mouse model of usher syndrome 3A and transduces hair cells in a non-human primate. Mol Ther Methods Clin Dev 13:1–13PubMedCrossRef
90.
go back to reference Ivanchenko MV, Hanlon KS, Devine MK, Tenneson K, Emond F, Lafond JF, Kenna MA, Corey DP, Maguire CA (2020) Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hear Res 394:107930 Ivanchenko MV, Hanlon KS, Devine MK, Tenneson K, Emond F, Lafond JF, Kenna MA, Corey DP, Maguire CA (2020) Preclinical testing of AAV9-PHP.B for transgene expression in the non-human primate cochlea. Hear Res 394:107930
91.
go back to reference Lee J, Nist-Lund C, Solanes P, Goldberg H, Wu J, Pan B, Schneider BL, Holt JR (2020) Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res 394:107882 Lee J, Nist-Lund C, Solanes P, Goldberg H, Wu J, Pan B, Schneider BL, Holt JR (2020) Efficient viral transduction in mouse inner ear hair cells with utricle injection and AAV9-PHP.B. Hear Res 394:107882
92.
93.
go back to reference Ho MK, Li X, Wang J, Ohmen JD, Friedman RA (2014) FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss. Audiol Neurotol Extra 4:1–11PubMedPubMedCentralCrossRef Ho MK, Li X, Wang J, Ohmen JD, Friedman RA (2014) FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss. Audiol Neurotol Extra 4:1–11PubMedPubMedCentralCrossRef
94.
go back to reference Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH (2022) Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKbeta. Cell Mol Life Sci 79:249PubMedCrossRef Wu F, Hill K, Fang Q, He Z, Zheng H, Wang X, Xiong H, Sha SH (2022) Traumatic-noise-induced hair cell death and hearing loss is mediated by activation of CaMKKbeta. Cell Mol Life Sci 79:249PubMedCrossRef
95.
go back to reference Wang X, Yuan C, Huang B et al (2019) Developing a versatile shotgun cloning strategy for single-vector-based multiplex expression of short interfering RNAs (siRNAs) in mammalian cells. ACS Synthe Bio 8:2092–2105CrossRef Wang X, Yuan C, Huang B et al (2019) Developing a versatile shotgun cloning strategy for single-vector-based multiplex expression of short interfering RNAs (siRNAs) in mammalian cells. ACS Synthe Bio 8:2092–2105CrossRef
96.
go back to reference Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol 67:657–685CrossRef Agrawal N, Dasaradhi PV, Mohmmed A, Malhotra P, Bhatnagar RK, Mukherjee SK (2003) RNA interference: biology, mechanism, and applications. Microbiol Mol Biol 67:657–685CrossRef
97.
go back to reference Morrison C (2018) Alnylam prepares to land first RNAi drug approval. Nat Rev Drug Discovery 17:156–157PubMedCrossRef Morrison C (2018) Alnylam prepares to land first RNAi drug approval. Nat Rev Drug Discovery 17:156–157PubMedCrossRef
98.
go back to reference Bellosta S, Rossi C, Alieva AS, Catapano AL, Corsini A, Baragetti A (2022) Cholesterol lowering biotechnological strategies: from monoclonal antibodies to antisense therapies. a pre-clinical perspective review. Cardiovasc Drugs Ther Bellosta S, Rossi C, Alieva AS, Catapano AL, Corsini A, Baragetti A (2022) Cholesterol lowering biotechnological strategies: from monoclonal antibodies to antisense therapies. a pre-clinical perspective review. Cardiovasc Drugs Ther
99.
go back to reference Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J (2018) AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther 25:251–259PubMedPubMedCentralCrossRef Chen H, Xing Y, Xia L, Chen Z, Yin S, Wang J (2018) AAV-mediated NT-3 overexpression protects cochleae against noise-induced synaptopathy. Gene Ther 25:251–259PubMedPubMedCentralCrossRef
100.
go back to reference Liu Y, Okada T, Shimazaki K et al (2008) Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 16:474–480PubMedCrossRef Liu Y, Okada T, Shimazaki K et al (2008) Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 16:474–480PubMedCrossRef
101.
go back to reference Zheng G, Zhu Z, Zhu K, Wei J, Jing Y, Duan M (2013) Therapeutic effect of adeno-associated virus (AAV)-mediated ADNF-9 expression on cochlea of kanamycin-deafened guinea pigs. Acta Otolaryngol 133:1022–1029PubMedCrossRef Zheng G, Zhu Z, Zhu K, Wei J, Jing Y, Duan M (2013) Therapeutic effect of adeno-associated virus (AAV)-mediated ADNF-9 expression on cochlea of kanamycin-deafened guinea pigs. Acta Otolaryngol 133:1022–1029PubMedCrossRef
102.
go back to reference Akil O, Blits B, Lustig LR, Leake PA (2019) Virally mediated overexpression of glial-derived neurotrophic factor elicits age- and dose-dependent neuronal toxicity and hearing loss. Hum Gene Ther 30:88–105PubMedPubMedCentralCrossRef Akil O, Blits B, Lustig LR, Leake PA (2019) Virally mediated overexpression of glial-derived neurotrophic factor elicits age- and dose-dependent neuronal toxicity and hearing loss. Hum Gene Ther 30:88–105PubMedPubMedCentralCrossRef
103.
go back to reference Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S, Selesnick SH, Kaplitt MG (2006) AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 27:484–490PubMedCrossRef Cooper LB, Chan DK, Roediger FC, Shaffer BR, Fraser JF, Musatov S, Selesnick SH, Kaplitt MG (2006) AAV-mediated delivery of the caspase inhibitor XIAP protects against cisplatin ototoxicity. Otol Neurotol 27:484–490PubMedCrossRef
104.
go back to reference Qi F, Zhang R, Chen J et al (2019) Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice. Aging 11:6490–6502PubMedPubMedCentralCrossRef Qi F, Zhang R, Chen J et al (2019) Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice. Aging 11:6490–6502PubMedPubMedCentralCrossRef
105.
go back to reference Mukherjee S, Kuroiwa M, Oakden W et al (2021) Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther Mukherjee S, Kuroiwa M, Oakden W et al (2021) Local magnetic delivery of adeno-associated virus AAV2(quad Y-F)-mediated BDNF gene therapy restores hearing after noise injury. Mol Ther
106.
go back to reference Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H (2021) Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 22:86PubMedPubMedCentralCrossRef Gu X, Wang D, Xu Z, Wang J, Guo L, Chai R, Li G, Shu Y, Li H (2021) Prevention of acquired sensorineural hearing loss in mice by in vivo Htra2 gene editing. Genome Biol 22:86PubMedPubMedCentralCrossRef
107.
go back to reference El Andari J, Grimm D (2021) Production, processing, and characterization of synthetic AAV gene therapy vectors. Biotechnol J 16:e2000025PubMedCrossRef El Andari J, Grimm D (2021) Production, processing, and characterization of synthetic AAV gene therapy vectors. Biotechnol J 16:e2000025PubMedCrossRef
108.
go back to reference Penaud-Budloo M, Francois A, Clement N, Ayuso E (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180CrossRef Penaud-Budloo M, Francois A, Clement N, Ayuso E (2018) Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev 8:166–180CrossRef
Metadata
Title
Current Advances in Adeno-Associated Virus-Mediated Gene Therapy to Prevent Acquired Hearing Loss
Authors
Fan Wu
Kumar Sambamurti
Suhua Sha
Publication date
24-08-2022
Publisher
Springer US
Published in
Journal of the Association for Research in Otolaryngology / Issue 5/2022
Print ISSN: 1525-3961
Electronic ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-022-00866-y

Other articles of this Issue 5/2022

Journal of the Association for Research in Otolaryngology 5/2022 Go to the issue