Skip to main content
Top
Published in: Neurotherapeutics 1/2019

01-01-2019 | Review

Gene Therapy for Neurodegenerative Diseases

Authors: Vivek Sudhakar, R. Mark Richardson

Published in: Neurotherapeutics | Issue 1/2019

Login to get access

Abstract

Gene therapy has the potential to provide therapeutic benefit to millions of people with neurodegenerative diseases through several means, including direct correction of pathogenic mechanisms, neuroprotection, neurorestoration, and symptom control. Therapeutic efficacy is therefore dependent on knowledge of the disease pathogenesis and the required temporal and spatial specificity of gene expression. An additional critical challenge is achieving the most complete transduction of the target structure while avoiding leakage into neighboring regions or perivascular spaces. The gene therapy field has recently entered a new technological era, in which interventional MRI-guided convection-enhanced delivery (iMRI-CED) is the gold standard for verifying accurate vector delivery in real time. The availability of this advanced neurosurgical technique may accelerate the translation of the promising preclinical therapeutics under development for neurodegenerative disorders, including Parkinson’s, Huntington’s, and Alzheimer’s diseases.
Appendix
Available only for authorised users
Literature
2.
go back to reference Palfi S, Gurruchaga JM, Ralph GS, et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146CrossRefPubMed Palfi S, Gurruchaga JM, Ralph GS, et al (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet 383:1138–1146CrossRefPubMed
3.
go back to reference Salegio EA, Samaranch L, Kells AP, et al (2013) Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Therapy 20:348–352CrossRefPubMed Salegio EA, Samaranch L, Kells AP, et al (2013) Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Therapy 20:348–352CrossRefPubMed
4.
go back to reference Ciesielska A, Mittermeyer G, Hadaczek P, Kells AP, Forsayeth J, Bankiewicz KS (2011) Anterograde Axonal Transport of AAV2-GDNF in Rat Basal Ganglia. Mol Ther 19:922–927CrossRefPubMed Ciesielska A, Mittermeyer G, Hadaczek P, Kells AP, Forsayeth J, Bankiewicz KS (2011) Anterograde Axonal Transport of AAV2-GDNF in Rat Basal Ganglia. Mol Ther 19:922–927CrossRefPubMed
7.
go back to reference San Sebastian W, Samaranch L, Heller G, et al (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 20:1178–1183CrossRefPubMed San Sebastian W, Samaranch L, Heller G, et al (2013) Adeno-associated virus type 6 is retrogradely transported in the non-human primate brain. Gene Ther 20:1178–1183CrossRefPubMed
8.
go back to reference Samaranch L, Salegio EA, San Sebastian W, et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24:526–532CrossRefPubMedPubMedCentral Samaranch L, Salegio EA, San Sebastian W, et al (2013) Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther 24:526–532CrossRefPubMedPubMedCentral
9.
10.
go back to reference Eberling JL, Jagust WJ, Christine CW, et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983CrossRefPubMed Eberling JL, Jagust WJ, Christine CW, et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70:1980–1983CrossRefPubMed
11.
go back to reference Marks WJ, Ostrem JL, Verhagen L, et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408CrossRefPubMed Marks WJ, Ostrem JL, Verhagen L, et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7:400–408CrossRefPubMed
12.
13.
go back to reference Muramatsu S, Fujimoto K, Kato S, et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735CrossRefPubMedPubMedCentral Muramatsu S, Fujimoto K, Kato S, et al (2010) A phase I study of aromatic L-amino acid decarboxylase gene therapy for Parkinson’s disease. Mol Ther 18:1731–1735CrossRefPubMedPubMedCentral
14.
go back to reference Rafii MS, Tuszynski MH, Thomas RG, et al (2018) Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 75:834–841CrossRefPubMedPubMedCentral Rafii MS, Tuszynski MH, Thomas RG, et al (2018) Adeno-Associated Viral Vector (Serotype 2)-Nerve Growth Factor for Patients With Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol 75:834–841CrossRefPubMedPubMedCentral
15.
go back to reference Marks WJ, Bartus RT, Siffert J, et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172CrossRefPubMed Marks WJ, Bartus RT, Siffert J, et al (2010) Gene delivery of AAV2-neurturin for Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol 9:1164–1172CrossRefPubMed
16.
go back to reference LeWitt PA, Rezai AR, Leehey MA, et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319CrossRefPubMed LeWitt PA, Rezai AR, Leehey MA, et al (2011) AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol 10:309–319CrossRefPubMed
17.
go back to reference Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91:2076–2080CrossRefPubMedPubMedCentral Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH (1994) Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A 91:2076–2080CrossRefPubMedPubMedCentral
18.
go back to reference Krauze MT, Saito R, Noble C, et al (2005) Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 103:923–929CrossRefPubMed Krauze MT, Saito R, Noble C, et al (2005) Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg 103:923–929CrossRefPubMed
19.
go back to reference Varenika V, Dickinson P, Bringas J, et al (2008) Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg 109:874–880CrossRefPubMedPubMedCentral Varenika V, Dickinson P, Bringas J, et al (2008) Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg 109:874–880CrossRefPubMedPubMedCentral
20.
go back to reference Varenika V, Kells AP, Valles F, Hadaczek P, Forsayeth J, Bankiewicz KS (2009) Controlled dissemination of AAV vectors in the primate brain. Prog Brain Res 175:163–172CrossRefPubMed Varenika V, Kells AP, Valles F, Hadaczek P, Forsayeth J, Bankiewicz KS (2009) Controlled dissemination of AAV vectors in the primate brain. Prog Brain Res 175:163–172CrossRefPubMed
21.
go back to reference Valles F, Fiandaca MS, Bringas J, et al (2009) Anatomic compression caused by high-volume convection-enhanced delivery to the brain. Neurosurgery 65:579–585; discussion 585-586CrossRefPubMed Valles F, Fiandaca MS, Bringas J, et al (2009) Anatomic compression caused by high-volume convection-enhanced delivery to the brain. Neurosurgery 65:579–585; discussion 585-586CrossRefPubMed
22.
go back to reference Valles F, Fiandaca MS, Eberling JL, et al (2010) Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase i study for the treatment of parkinson disease. Neurosurgery 67:1377–1385CrossRefPubMed Valles F, Fiandaca MS, Eberling JL, et al (2010) Qualitative imaging of adeno-associated virus serotype 2-human aromatic L-amino acid decarboxylase gene therapy in a phase i study for the treatment of parkinson disease. Neurosurgery 67:1377–1385CrossRefPubMed
23.
go back to reference Yin D, Richardson RM, Fiandaca MS, et al (2010) Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 113:240–248CrossRefPubMed Yin D, Richardson RM, Fiandaca MS, et al (2010) Cannula placement for effective convection-enhanced delivery in the nonhuman primate thalamus and brainstem: implications for clinical delivery of therapeutics. J Neurosurg 113:240–248CrossRefPubMed
24.
go back to reference Yin D, Valles FE, Fiandaca MS, et al (2011) Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 54 Suppl 1:S196–203CrossRefPubMed Yin D, Valles FE, Fiandaca MS, et al (2011) Optimal region of the putamen for image-guided convection-enhanced delivery of therapeutics in human and non-human primates. Neuroimage 54 Suppl 1:S196–203CrossRefPubMed
25.
go back to reference Richardson RM, Kells AP, Martin AJ, et al (2011) Novel platform for MRI-guided convection-enhanced delivery of therapeutics: Preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 89:141–151CrossRefPubMedPubMedCentral Richardson RM, Kells AP, Martin AJ, et al (2011) Novel platform for MRI-guided convection-enhanced delivery of therapeutics: Preclinical validation in nonhuman primate brain. Stereotact Funct Neurosurg 89:141–151CrossRefPubMedPubMedCentral
26.
go back to reference Su X, Kells AP, Salegio EA, et al (2010) Real-time MR imaging with Gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther 18:1490–1495CrossRefPubMedPubMedCentral Su X, Kells AP, Salegio EA, et al (2010) Real-time MR imaging with Gadoteridol predicts distribution of transgenes after convection-enhanced delivery of AAV2 vectors. Mol Ther 18:1490–1495CrossRefPubMedPubMedCentral
27.
go back to reference Richardson RM, Kells AP, Rosenbluth KH, et al (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19:1048–1057CrossRefPubMedPubMedCentral Richardson RM, Kells AP, Rosenbluth KH, et al (2011) Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther 19:1048–1057CrossRefPubMedPubMedCentral
28.
go back to reference Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ (2012) An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 70:95–103; discussion 103CrossRefPubMed Larson PS, Starr PA, Bates G, Tansey L, Richardson RM, Martin AJ (2012) An optimized system for interventional magnetic resonance imaging-guided stereotactic surgery: preliminary evaluation of targeting accuracy. Neurosurgery 70:95–103; discussion 103CrossRefPubMed
29.
go back to reference Ostrem JL, Ziman N, Galifianakis NB, et al (2016) Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg 124:908–916CrossRefPubMed Ostrem JL, Ziman N, Galifianakis NB, et al (2016) Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg 124:908–916CrossRefPubMed
30.
go back to reference Sidiropoulos C, Rammo R, Merker B, et al (2016) Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J Neurol 263:1226–1231CrossRefPubMed Sidiropoulos C, Rammo R, Merker B, et al (2016) Intraoperative MRI for deep brain stimulation lead placement in Parkinson’s disease: 1 year motor and neuropsychological outcomes. J Neurol 263:1226–1231CrossRefPubMed
32.
go back to reference Levy R, Lang AE, Dostrovsky JO, et al (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118CrossRefPubMed Levy R, Lang AE, Dostrovsky JO, et al (2001) Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118CrossRefPubMed
33.
go back to reference Emborg ME, Carbon M, Holden JE, et al (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509CrossRefPubMed Emborg ME, Carbon M, Holden JE, et al (2007) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab 27:501–509CrossRefPubMed
34.
go back to reference Kaplitt MG, Feigin A, Tang C, et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105CrossRefPubMed Kaplitt MG, Feigin A, Tang C, et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369:2097–2105CrossRefPubMed
35.
go back to reference Bankiewicz KS, Forsayeth J, Eberling JL, et al (2006) Long-Term Clinical Improvement in MPTP-Lesioned Primates after Gene Therapy with AAV-hAADC. Mol Ther 14:564–570CrossRefPubMed Bankiewicz KS, Forsayeth J, Eberling JL, et al (2006) Long-Term Clinical Improvement in MPTP-Lesioned Primates after Gene Therapy with AAV-hAADC. Mol Ther 14:564–570CrossRefPubMed
36.
go back to reference Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18:1458–61CrossRefPubMedPubMedCentral Hadaczek P, Eberling JL, Pivirotto P, Bringas J, Forsayeth J, Bankiewicz KS (2010) Eight years of clinical improvement in MPTP-lesioned primates after gene therapy with AAV2-hAADC. Mol Ther 18:1458–61CrossRefPubMedPubMedCentral
37.
go back to reference Forsayeth JR, Eberling JL, Sanftner LM, et al (2006) A Dose-Ranging Study of AAV-hAADC Therapy in Parkinsonian Monkeys. Mol Ther 14:571–577CrossRefPubMed Forsayeth JR, Eberling JL, Sanftner LM, et al (2006) A Dose-Ranging Study of AAV-hAADC Therapy in Parkinsonian Monkeys. Mol Ther 14:571–577CrossRefPubMed
38.
go back to reference San Sebastian W, Richardson RM, Kells AP, et al (2012) Safety and tolerability of magnetic resonance imaging-guided convection-enhanced delivery of AAV2-hAADC with a novel delivery platform in nonhuman primate striatum. Hum Gene Ther 23:210–217CrossRefPubMed San Sebastian W, Richardson RM, Kells AP, et al (2012) Safety and tolerability of magnetic resonance imaging-guided convection-enhanced delivery of AAV2-hAADC with a novel delivery platform in nonhuman primate striatum. Hum Gene Ther 23:210–217CrossRefPubMed
39.
go back to reference Bankiewicz KS, Eberling JL, Kohutnicka M, et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14CrossRefPubMed Bankiewicz KS, Eberling JL, Kohutnicka M, et al (2000) Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 164:2–14CrossRefPubMed
40.
go back to reference Mittermeyer G, Christine CW, Rosenbluth KH, et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381CrossRefPubMedPubMedCentral Mittermeyer G, Christine CW, Rosenbluth KH, et al (2012) Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther 23:377–381CrossRefPubMedPubMedCentral
41.
go back to reference Dass B, Olanow CW, Kordower JH (2006) Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s disease. Neurology 66:S89–S103CrossRefPubMed Dass B, Olanow CW, Kordower JH (2006) Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s disease. Neurology 66:S89–S103CrossRefPubMed
42.
go back to reference Lang AE, Gill S, Patel NK, et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466CrossRefPubMed Lang AE, Gill S, Patel NK, et al (2006) Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 59:459–466CrossRefPubMed
43.
go back to reference Gill SS, Patel NK, Hotton GR, et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595CrossRefPubMed Gill SS, Patel NK, Hotton GR, et al (2003) Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 9:589–595CrossRefPubMed
44.
go back to reference Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line—derived neurotrophic factor. J Neurosurg 102:216–222CrossRefPubMed Slevin JT, Gerhardt GA, Smith CD, Gash DM, Kryscio R, Young B (2005) Improvement of bilateral motor functions in patients with Parkinson disease through the unilateral intraputaminal infusion of glial cell line—derived neurotrophic factor. J Neurosurg 102:216–222CrossRefPubMed
45.
go back to reference Salvatore MF, Ai Y, Fischer B, et al (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202:497–505CrossRefPubMed Salvatore MF, Ai Y, Fischer B, et al (2006) Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol 202:497–505CrossRefPubMed
46.
go back to reference Barua N, Gill S (2018) Drug Delivery for Movement Disorders. Curr Concepts Mov Disord Manag 33:243–252CrossRef Barua N, Gill S (2018) Drug Delivery for Movement Disorders. Curr Concepts Mov Disord Manag 33:243–252CrossRef
47.
go back to reference Kordower JH, Emborg ME, Bloch J, et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–73CrossRefPubMed Kordower JH, Emborg ME, Bloch J, et al (2000) Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 290:767–73CrossRefPubMed
48.
go back to reference Johnston LC, Eberling J, Pivirotto P, et al (2009) Clinically Relevant Effects of Convection-Enhanced Delivery of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Aged Rhesus Monkeys. Hum Gene Ther 20:497–510CrossRefPubMedPubMedCentral Johnston LC, Eberling J, Pivirotto P, et al (2009) Clinically Relevant Effects of Convection-Enhanced Delivery of AAV2-GDNF on the Dopaminergic Nigrostriatal Pathway in Aged Rhesus Monkeys. Hum Gene Ther 20:497–510CrossRefPubMedPubMedCentral
49.
go back to reference Su X, Kells AP, Huang EJ, et al (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther 20:1627–1640CrossRefPubMedPubMedCentral Su X, Kells AP, Huang EJ, et al (2009) Safety evaluation of AAV2-GDNF gene transfer into the dopaminergic nigrostriatal pathway in aged and parkinsonian rhesus monkeys. Hum Gene Ther 20:1627–1640CrossRefPubMedPubMedCentral
50.
go back to reference Kells AP, Eberling J, Su X, et al (2010) Regeneration of the MPTP-Lesioned Dopaminergic System after Convection-Enhanced Delivery of AAV2-GDNF. J Neurosci 30:9567–9577CrossRefPubMedPubMedCentral Kells AP, Eberling J, Su X, et al (2010) Regeneration of the MPTP-Lesioned Dopaminergic System after Convection-Enhanced Delivery of AAV2-GDNF. J Neurosci 30:9567–9577CrossRefPubMedPubMedCentral
51.
go back to reference Cik M, Masure S, Lesage ASJ, et al (2000) Binding of GDNF and Neurturin to Human GDNF family receptor alpha 1 and 2: Influence of cRET and cooperative interactions. J Biol Chem 275:27505–27512PubMed Cik M, Masure S, Lesage ASJ, et al (2000) Binding of GDNF and Neurturin to Human GDNF family receptor alpha 1 and 2: Influence of cRET and cooperative interactions. J Biol Chem 275:27505–27512PubMed
52.
go back to reference Kordower JH, Herzog CD, Dass B, et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715CrossRefPubMed Kordower JH, Herzog CD, Dass B, et al (2006) Delivery of neurturin by AAV2 (CERE-120)-mediated gene transfer provides structural and functional neuroprotection and neurorestoration in MPTP-treated monkeys. Ann Neurol 60:706–715CrossRefPubMed
53.
go back to reference Olanow WC, Bartus RT, Baumann TL, et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. Ann Neurol 78:248–257CrossRef Olanow WC, Bartus RT, Baumann TL, et al (2015) Gene delivery of neurturin to putamen and substantia nigra in Parkinson disease: A double-blind, randomized, controlled trial. Ann Neurol 78:248–257CrossRef
54.
go back to reference Bartus RT, Baumann TL, Siffert J, et al (2013) Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80:1698–1701CrossRefPubMedPubMedCentral Bartus RT, Baumann TL, Siffert J, et al (2013) Safety/feasibility of targeting the substantia nigra with AAV2-neurturin in Parkinson patients. Neurology 80:1698–1701CrossRefPubMedPubMedCentral
55.
go back to reference MacDonald ME, Ambrose CM, Duyao MP, et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef MacDonald ME, Ambrose CM, Duyao MP, et al (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983CrossRef
56.
go back to reference Ross CA, Tabrizi SJ (2011) Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98CrossRefPubMed Ross CA, Tabrizi SJ (2011) Huntington’s disease: From molecular pathogenesis to clinical treatment. Lancet Neurol 10:83–98CrossRefPubMed
58.
go back to reference Yamamoto A, Lucas JJ, Hen R (2000) Reversal of Neuropathology and Motor Dysfunction in a Conditional Model of Huntington’s Disease. Cell 101:57–66CrossRefPubMed Yamamoto A, Lucas JJ, Hen R (2000) Reversal of Neuropathology and Motor Dysfunction in a Conditional Model of Huntington’s Disease. Cell 101:57–66CrossRefPubMed
59.
go back to reference Hutvagner G, Simard MJ (2008) Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32CrossRefPubMed Hutvagner G, Simard MJ (2008) Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol 9:22–32CrossRefPubMed
60.
go back to reference McBride JL, Pitzer MR, Boudreau RL, et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162CrossRefPubMedPubMedCentral McBride JL, Pitzer MR, Boudreau RL, et al (2011) Preclinical safety of RNAi-mediated HTT suppression in the rhesus macaque as a potential therapy for Huntington’s disease. Mol Ther 19:2152–2162CrossRefPubMedPubMedCentral
61.
go back to reference Grondin R, Kaytor MD, Ai Y, et al (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 135:1197–1209CrossRefPubMedPubMedCentral Grondin R, Kaytor MD, Ai Y, et al (2012) Six-month partial suppression of Huntingtin is well tolerated in the adult rhesus striatum. Brain 135:1197–1209CrossRefPubMedPubMedCentral
62.
go back to reference Miniarikova J, Zanella I, Huseinovic A, et al (2016) Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington’s Disease. Mol Ther Nucleic Acids 5:e297CrossRefPubMedPubMedCentral Miniarikova J, Zanella I, Huseinovic A, et al (2016) Design, Characterization, and Lead Selection of Therapeutic miRNAs Targeting Huntingtin for Development of Gene Therapy for Huntington’s Disease. Mol Ther Nucleic Acids 5:e297CrossRefPubMedPubMedCentral
63.
go back to reference Miniarikova J, Zimmer V, Martier R, et al (2017) AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther 24:630–639CrossRefPubMedPubMedCentral Miniarikova J, Zimmer V, Martier R, et al (2017) AAV5-miHTT gene therapy demonstrates suppression of mutant huntingtin aggregation and neuronal dysfunction in a rat model of Huntington’s disease. Gene Ther 24:630–639CrossRefPubMedPubMedCentral
64.
go back to reference Evers MM, Miniarikova J, Juhas S, et al (2018) AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Mol Ther 26:2163–2177CrossRefPubMedPubMedCentral Evers MM, Miniarikova J, Juhas S, et al (2018) AAV5-miHTT Gene Therapy Demonstrates Broad Distribution and Strong Human Mutant Huntingtin Lowering in a Huntington’s Disease Minipig Model. Mol Ther 26:2163–2177CrossRefPubMedPubMedCentral
65.
go back to reference Koliatsos VE, Nauta HJ, Clatterbuck RE, Holtzman DM, Mobley WC, Price DL (1990) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J Neurosci 10:3801–3813CrossRefPubMedPubMedCentral Koliatsos VE, Nauta HJ, Clatterbuck RE, Holtzman DM, Mobley WC, Price DL (1990) Mouse nerve growth factor prevents degeneration of axotomized basal forebrain cholinergic neurons in the monkey. J Neurosci 10:3801–3813CrossRefPubMedPubMedCentral
66.
go back to reference Kordower JH, Winn SR, Liu YT, et al (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci U S A 91:10898–10902CrossRefPubMedPubMedCentral Kordower JH, Winn SR, Liu YT, et al (1994) The aged monkey basal forebrain: rescue and sprouting of axotomized basal forebrain neurons after grafts of encapsulated cells secreting human nerve growth factor. Proc Natl Acad Sci U S A 91:10898–10902CrossRefPubMedPubMedCentral
67.
go back to reference Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH (1996) Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 3:305–314PubMed Tuszynski MH, Roberts J, Senut MC, U HS, Gage FH (1996) Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 3:305–314PubMed
Metadata
Title
Gene Therapy for Neurodegenerative Diseases
Authors
Vivek Sudhakar
R. Mark Richardson
Publication date
01-01-2019
Publisher
Springer International Publishing
Published in
Neurotherapeutics / Issue 1/2019
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-018-00694-0

Other articles of this Issue 1/2019

Neurotherapeutics 1/2019 Go to the issue