Skip to main content
Top
Published in: Journal of Interventional Cardiac Electrophysiology 1/2016

01-01-2016 | EDITOR’S FORUM

Gene-guided therapy for catheter-ablation of atrial fibrillation: are we there yet?

Authors: Henry Huang, Dawood Darbar

Published in: Journal of Interventional Cardiac Electrophysiology | Issue 1/2016

Login to get access

Excerpt

In the last decade, increasing evidence has emerged for a genetic predisposition to atrial fibrillation (AF). In 2003, Mayo Clinic investigators showed that 15 % of patients with lone AF had a positive family history of the condition [1]. Subsequent epidemiological studies observed that the odds of developing AF increased three to five-fold depending on the age of onset of AF in a parent [2, 3]. Furthermore, numerous genes associated with AF have been identified using positional cloning and linkage analyses, candidate gene and exome-sequencing approaches [4]. In 2003, the first gene (KCNQ1) encoding the delayed cardiac rectifier potassium channel (IKs) was linked with familial AF. [5] Mutations encoding cardiac ion channels (Na+, K+ and Ca2+), gap junction proteins (connexins) and signaling molecules (nucleoporin 155 [NUP155], natriuretic peptide precursor A [NPPA]) have been described in Mendelian forms of AF. However, the extent to which genetic factors contribute to the more common forms of AF remained unclear until the advent of genome-wide association studies (GWAS). …
Literature
1.
go back to reference Darbar, D., Herron, K. J., Ballew, J. D., Jahangir, A., Gersh, B. J., Shen, W. K., et al. (2003). Familial atrial fibrillation is a genetically heterogeneous disorder. Journal of the American College of Cardiology, 41, 2185–92.CrossRefPubMed Darbar, D., Herron, K. J., Ballew, J. D., Jahangir, A., Gersh, B. J., Shen, W. K., et al. (2003). Familial atrial fibrillation is a genetically heterogeneous disorder. Journal of the American College of Cardiology, 41, 2185–92.CrossRefPubMed
2.
go back to reference Fox, C. S., Parise, H., D'Agostino, R. B., Sr., Lloyd-Jones, D. M., Vasan, R. S., Wang, T. J., et al. (2004). Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA, 291, 2851–5.CrossRefPubMed Fox, C. S., Parise, H., D'Agostino, R. B., Sr., Lloyd-Jones, D. M., Vasan, R. S., Wang, T. J., et al. (2004). Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA, 291, 2851–5.CrossRefPubMed
3.
go back to reference Arnar, D. O., Thorvaldsson, S., Manolio, T. A., Thorgeirsson, G., Kristjansson, K., Hakonarson, H., et al. (2006). Familial aggregation of atrial fibrillation in Iceland. European Heart Journal, 27, 708–12.CrossRefPubMed Arnar, D. O., Thorvaldsson, S., Manolio, T. A., Thorgeirsson, G., Kristjansson, K., Hakonarson, H., et al. (2006). Familial aggregation of atrial fibrillation in Iceland. European Heart Journal, 27, 708–12.CrossRefPubMed
4.
go back to reference Darbar, D., & Roden, D. M. (2013). Genetic mechanisms of atrial fibrillation: impact on response to treatment. Nature Reviews Cardiology, 10, 317–29.PubMedCentralCrossRefPubMed Darbar, D., & Roden, D. M. (2013). Genetic mechanisms of atrial fibrillation: impact on response to treatment. Nature Reviews Cardiology, 10, 317–29.PubMedCentralCrossRefPubMed
5.
go back to reference Chen, Y. H., Xu, S. J., Bendahhou, S., Wang, X. L., Wang, Y., Xu, W. Y., et al. (2003). KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 299, 251–4.CrossRefPubMed Chen, Y. H., Xu, S. J., Bendahhou, S., Wang, X. L., Wang, Y., Xu, W. Y., et al. (2003). KCNQ1 gain-of-function mutation in familial atrial fibrillation. Science, 299, 251–4.CrossRefPubMed
6.
go back to reference Gudbjartsson, D. F., Arnar, D. O., Helgadottir, A., Gretarsdottir, S., Holm, H., Sigurdsson, A., et al. (2007). Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature, 488, 353–7.CrossRef Gudbjartsson, D. F., Arnar, D. O., Helgadottir, A., Gretarsdottir, S., Holm, H., Sigurdsson, A., et al. (2007). Variants conferring risk of atrial fibrillation on chromosome 4q25. Nature, 488, 353–7.CrossRef
7.
go back to reference Mommersteeg, M. T., Brown, N. A., Prall, O. W., de Gier-de Vries, C., Harvey, R. P., Moorman, A. F., et al. (2007). Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circulation Research, 101, 902–9.CrossRefPubMed Mommersteeg, M. T., Brown, N. A., Prall, O. W., de Gier-de Vries, C., Harvey, R. P., Moorman, A. F., et al. (2007). Pitx2c and Nkx2-5 are required for the formation and identity of the pulmonary myocardium. Circulation Research, 101, 902–9.CrossRefPubMed
8.
go back to reference Body, S. C., Collard, C. D., Shernan, S. K., Fox, A. A., Liu, K. Y., Ritchie, M. D., et al. (2009). Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circulation. Cardiovascular Genetics, 2, 499–506.CrossRefPubMed Body, S. C., Collard, C. D., Shernan, S. K., Fox, A. A., Liu, K. Y., Ritchie, M. D., et al. (2009). Variation in the 4q25 chromosomal locus predicts atrial fibrillation after coronary artery bypass graft surgery. Circulation. Cardiovascular Genetics, 2, 499–506.CrossRefPubMed
9.
go back to reference Gudbjartsson, D. F., Holm, H., Gretarsdottir, S., Thorleifsson, G., Walters, G. B., Thorgeirsson, G., et al. (2009). A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nature Genetics, 8, 876–8.CrossRef Gudbjartsson, D. F., Holm, H., Gretarsdottir, S., Thorleifsson, G., Walters, G. B., Thorgeirsson, G., et al. (2009). A sequence variant in ZFHX3 on 16q22 associates with atrial fibrillation and ischemic stroke. Nature Genetics, 8, 876–8.CrossRef
10.
go back to reference Ellinor, P. T., Lunetta, K. L., Glazer, N. L., Pfeufer, A., Alonso, A., Chung, M. K., et al. (2010). Common variants in KCNN3 are associated with lone atrial fibrillation. Nature Genetics, 42, 240–44.PubMedCentralCrossRefPubMed Ellinor, P. T., Lunetta, K. L., Glazer, N. L., Pfeufer, A., Alonso, A., Chung, M. K., et al. (2010). Common variants in KCNN3 are associated with lone atrial fibrillation. Nature Genetics, 42, 240–44.PubMedCentralCrossRefPubMed
11.
go back to reference Ellinor, P. T., Lunetta, K. L., Albert, C. M., Glazer, N. L., Ritchie, M. D., Smith, A. V., et al. (2012). Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nature Genetics, 44, 670–5.PubMedCentralCrossRefPubMed Ellinor, P. T., Lunetta, K. L., Albert, C. M., Glazer, N. L., Ritchie, M. D., Smith, A. V., et al. (2012). Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nature Genetics, 44, 670–5.PubMedCentralCrossRefPubMed
12.
go back to reference Sinner, M. F., Tucker, N. R., Lunetta, K. L., Ozaki, K., Smith, J. G., Trompet, S., et al. (2014). Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation, 130, 1225–35.PubMedCentralCrossRefPubMed Sinner, M. F., Tucker, N. R., Lunetta, K. L., Ozaki, K., Smith, J. G., Trompet, S., et al. (2014). Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. Circulation, 130, 1225–35.PubMedCentralCrossRefPubMed
13.
go back to reference Parvez, B., Vaglio, J., Rowan, S., Muhammad, R., Kucera, G., Stubblefield, T., et al. (2012). Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. Journal of the American College of Cardiology, 60, 539–45.PubMedCentralCrossRefPubMed Parvez, B., Vaglio, J., Rowan, S., Muhammad, R., Kucera, G., Stubblefield, T., et al. (2012). Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. Journal of the American College of Cardiology, 60, 539–45.PubMedCentralCrossRefPubMed
14.
go back to reference Husser, D., Adams, V., Piorkowski, C., Hindricks, G., & Bollmann, A. (2010). Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. Journal of the American College of Cardiology, 55, 747–53.CrossRefPubMed Husser, D., Adams, V., Piorkowski, C., Hindricks, G., & Bollmann, A. (2010). Chromosome 4q25 variants and atrial fibrillation recurrence after catheter ablation. Journal of the American College of Cardiology, 55, 747–53.CrossRefPubMed
15.
go back to reference Shoemaker, B. M., Muhammad, R., Parvez, B., White, B., Steur, M., Stubblefield, T., et al. (2013). Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm, 24, 575–600. Shoemaker, B. M., Muhammad, R., Parvez, B., White, B., Steur, M., Stubblefield, T., et al. (2013). Common atrial fibrillation risk alleles at 4q25 predict recurrence after catheter-based atrial fibrillation ablation. Heart Rhythm, 24, 575–600.
16.
go back to reference Shoemaker MB, Bollmann A, Ueberham L, Saini R, Montgomery J, Edwards T, et al. Common genetic variants and response to atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2015;In press. Shoemaker MB, Bollmann A, Ueberham L, Saini R, Montgomery J, Edwards T, et al. Common genetic variants and response to atrial fibrillation ablation. Circ Arrhythm Electrophysiol. 2015;In press.
17.
go back to reference Parvez, B., Shoemaker, M. B., Muhammad, R., Richardson, R., Jiang, L., Blair, M. A., et al. (2013). Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm, 10, 849–55.PubMedCentralCrossRefPubMed Parvez, B., Shoemaker, M. B., Muhammad, R., Richardson, R., Jiang, L., Blair, M. A., et al. (2013). Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. Heart Rhythm, 10, 849–55.PubMedCentralCrossRefPubMed
18.
go back to reference Choi, E. K., Park, J. H., Lee, J. Y., Nam, C. M., Hwang, M. K., Uhm, J. S., et al. (2015). Korean atrial fibrillation (AF) network: genetic variants for AF do not predict ablation success. Journal American Heart Asociation, 4, e002046.CrossRef Choi, E. K., Park, J. H., Lee, J. Y., Nam, C. M., Hwang, M. K., Uhm, J. S., et al. (2015). Korean atrial fibrillation (AF) network: genetic variants for AF do not predict ablation success. Journal American Heart Asociation, 4, e002046.CrossRef
19.
go back to reference Mohanty, S., Hall, P., Mohanty, P., et al. (2016). Novel association of polymorphic genetic variants with predictors of outcome of catheter ablation in atrial fibrillation: new directions from a prospective study (DECAF). Journal of Interventional Cardiac Electrophysiology, 45 (1). doi:10.1007/s10840-015-0069-2. Mohanty, S., Hall, P., Mohanty, P., et al. (2016). Novel association of polymorphic genetic variants with predictors of outcome of catheter ablation in atrial fibrillation: new directions from a prospective study (DECAF). Journal of Interventional Cardiac Electrophysiology, 45 (1). doi:10.​1007/​s10840-015-0069-2.
20.
go back to reference Balouch, M. A., Kolek, M. J., & Darbar, D. (2014). Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Global Cardiology Science & Practice., 2014, 24–36.CrossRef Balouch, M. A., Kolek, M. J., & Darbar, D. (2014). Improved understanding of the pathophysiology of atrial fibrillation through the lens of discrete pathological pathways. Global Cardiology Science & Practice., 2014, 24–36.CrossRef
21.
go back to reference Verheule, S., Sato, T., Everett, T., Engle, S. K., Otten, D., Rubart-von der Lohe, M., et al. (2004). Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circulation Research, 94, 1458–65.PubMedCentralCrossRefPubMed Verheule, S., Sato, T., Everett, T., Engle, S. K., Otten, D., Rubart-von der Lohe, M., et al. (2004). Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-beta1. Circulation Research, 94, 1458–65.PubMedCentralCrossRefPubMed
22.
go back to reference Mabuchi, M., Kataoka, H., Miura, Y., Kim, T. S., Kawaguchi, M., Ebi, M., et al. (2010). Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochemical and Biophysical Research Communications, 398, 321–5.CrossRefPubMed Mabuchi, M., Kataoka, H., Miura, Y., Kim, T. S., Kawaguchi, M., Ebi, M., et al. (2010). Tumor suppressor, AT motif binding factor 1 (ATBF1), translocates to the nucleus with runt domain transcription factor 3 (RUNX3) in response to TGF-beta signal transduction. Biochemical and Biophysical Research Communications, 398, 321–5.CrossRefPubMed
23.
go back to reference Chinchilla, A., Daimi, H., Lozano-Velasco, E., Dominguez, J. N., Caballero, R., Delpon, E., et al. (2011). PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circulation. Cardiovascular Genetics, 4, 269–79.CrossRefPubMed Chinchilla, A., Daimi, H., Lozano-Velasco, E., Dominguez, J. N., Caballero, R., Delpon, E., et al. (2011). PITX2 insufficiency leads to atrial electrical and structural remodeling linked to arrhythmogenesis. Circulation. Cardiovascular Genetics, 4, 269–79.CrossRefPubMed
24.
go back to reference Lubitz, S. A., Lunetta, K. L., Lin, H., Arking, D. E., Trompet, S., Li, G., et al. (2014). Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. Journal of the American College of Cardiology, 63, 1200–10.PubMedCentralCrossRefPubMed Lubitz, S. A., Lunetta, K. L., Lin, H., Arking, D. E., Trompet, S., Li, G., et al. (2014). Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. Journal of the American College of Cardiology, 63, 1200–10.PubMedCentralCrossRefPubMed
25.
go back to reference Lubitz, S. A., Sinner, M. F., Lunetta, K. L., Makino, S., Pfeufer, A., Rahman, R., et al. (2010). Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation, 122, 976–84.PubMedCentralCrossRefPubMed Lubitz, S. A., Sinner, M. F., Lunetta, K. L., Makino, S., Pfeufer, A., Rahman, R., et al. (2010). Independent susceptibility markers for atrial fibrillation on chromosome 4q25. Circulation, 122, 976–84.PubMedCentralCrossRefPubMed
26.
go back to reference Huang, Y., Wang, C., Yao, Y., Zuo, X., Chen, S., Xu, C., et al. (2015). Molecular basis of gene-gene interaction: cyclic cross-regulation of gene expression and post-GWAS gene-gene interaction involved in atrial fibrillation. PLoS Genetics, 11, e1005393.PubMedCentralCrossRefPubMed Huang, Y., Wang, C., Yao, Y., Zuo, X., Chen, S., Xu, C., et al. (2015). Molecular basis of gene-gene interaction: cyclic cross-regulation of gene expression and post-GWAS gene-gene interaction involved in atrial fibrillation. PLoS Genetics, 11, e1005393.PubMedCentralCrossRefPubMed
27.
go back to reference Roberts, J. D., & Marcus, G. M. (2015). The burgeoning field of ablatogenomics. Circulation. Arrhythmia and Electrophysiology, 8, 258–60.CrossRefPubMed Roberts, J. D., & Marcus, G. M. (2015). The burgeoning field of ablatogenomics. Circulation. Arrhythmia and Electrophysiology, 8, 258–60.CrossRefPubMed
Metadata
Title
Gene-guided therapy for catheter-ablation of atrial fibrillation: are we there yet?
Authors
Henry Huang
Dawood Darbar
Publication date
01-01-2016
Publisher
Springer US
Published in
Journal of Interventional Cardiac Electrophysiology / Issue 1/2016
Print ISSN: 1383-875X
Electronic ISSN: 1572-8595
DOI
https://doi.org/10.1007/s10840-015-0086-1

Other articles of this Issue 1/2016

Journal of Interventional Cardiac Electrophysiology 1/2016 Go to the issue