Skip to main content
Top
Published in: Virchows Archiv 6/2014

01-12-2014 | Original Article

Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis

Authors: M. Lieveld, E. Bodson, G. De Boeck, B. Nouman, A. M. Cleton-Jansen, E. Korsching, M. S. Benassi, P. Picci, G. Sys, B. Poffyn, N. A. Athanasou, P. C. W. Hogendoorn, R. G. Forsyth

Published in: Virchows Archiv | Issue 6/2014

Login to get access

Abstract

Giant cell tumor of bone (GCTB) displays worrisome clinical features such as local recurrence and occasionally metastatic disease which are unpredictable by morphology. Additional routinely usable biomarkers do not exist. Gene expression profiles of six clinically defined groups of GCTB and one group of aneurysmal bone cyst (ABC) were determined by microarray (n = 33). The most promising differentially expressed genes were validated by Q-PCR as potential biomarkers in a larger patient group (n = 41). Corresponding protein expression was confirmed by immunohistochemistry. Unsupervised hierarchical clustering reveals a metastatic GCTB cluster, a heterogeneous, non-metastatic GCTB cluster, and a primary ABC cluster. Balanced score testing indicates that lumican (LUM) and decorin (DCN) are the most promising biomarkers as they have lower level of expression in the metastatic group. Expression of dermatopontin (DPT) was significantly lower in recurrent tumors. Validation of the results was performed by paired and unpaired t test in primary GCTB and corresponding metastases, which proved that the differential expression of LUM and DCN is tumor specific rather than location specific. Our findings show that several genes related to extracellular matrix integrity (LUM, DCN, and DPT) are differentially expressed and may serve as biomarkers for metastatic and recurrent GCTB.
Literature
1.
go back to reference Zheng MH, Fan Y, Wysocki SJ et al (1994) Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration. Am J Pathol 145(5):1095–1104PubMedCentralPubMed Zheng MH, Fan Y, Wysocki SJ et al (1994) Gene expression of transforming growth factor-beta 1 and its type II receptor in giant cell tumors of bone. Possible involvement in osteoclast-like cell migration. Am J Pathol 145(5):1095–1104PubMedCentralPubMed
2.
go back to reference Joyner CJ, Quinn JM, Triffitt JT, Owen ME, Athanasou NA (1992) Phenotypic characterisation of mononuclear and multinucleated cells of giant cell tumour of bone. Bone Miner 16(1):37–48PubMedCrossRef Joyner CJ, Quinn JM, Triffitt JT, Owen ME, Athanasou NA (1992) Phenotypic characterisation of mononuclear and multinucleated cells of giant cell tumour of bone. Bone Miner 16(1):37–48PubMedCrossRef
3.
go back to reference Lindeman JH, Hanemaaijer R, Mulder A et al (2009) Cathepsin K is the principal protease in giant cell tumor of bone. Am J Pathol 165:593–600CrossRef Lindeman JH, Hanemaaijer R, Mulder A et al (2009) Cathepsin K is the principal protease in giant cell tumor of bone. Am J Pathol 165:593–600CrossRef
4.
go back to reference Forsyth RG, De Boeck G, Taminiau AHM et al (2009) CD33+ CD14− phenotype is characteristic of multinuclear osteoclast-like cells in giant cell tumor of bone. J Bone Miner Res 24(1):70–77PubMedCrossRef Forsyth RG, De Boeck G, Taminiau AHM et al (2009) CD33+ CD14− phenotype is characteristic of multinuclear osteoclast-like cells in giant cell tumor of bone. J Bone Miner Res 24(1):70–77PubMedCrossRef
5.
go back to reference da Costa CET, Annels NE, Faaij CMJM, Forsyth RG, Hogendoorn PCW, Egeler RM (2005) Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med 201(5):687–693PubMedCentralPubMedCrossRef da Costa CET, Annels NE, Faaij CMJM, Forsyth RG, Hogendoorn PCW, Egeler RM (2005) Presence of osteoclast-like multinucleated giant cells in the bone and nonostotic lesions of Langerhans cell histiocytosis. J Exp Med 201(5):687–693PubMedCentralPubMedCrossRef
6.
go back to reference Reid R, Banerjee SS, Sciot R (2002) WHO classification of tumors of bone: giant cell tumor. In: world health organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. IARC Press, Lyon, pp 310–312 Reid R, Banerjee SS, Sciot R (2002) WHO classification of tumors of bone: giant cell tumor. In: world health organization classification of tumors. Pathology and genetics of tumors of soft tissue and bone. IARC Press, Lyon, pp 310–312
7.
8.
go back to reference Blackley HR, Wunder JS, Davis AM, White LM, Kandel R, Bell RS (1999) Treatment of giant cell tumors of long bones with curettage and bone grafting. J Bone Joint Surg 81:811–820PubMedCrossRef Blackley HR, Wunder JS, Davis AM, White LM, Kandel R, Bell RS (1999) Treatment of giant cell tumors of long bones with curettage and bone grafting. J Bone Joint Surg 81:811–820PubMedCrossRef
10.
go back to reference Marcove RC, Sheth DS, Brien EW, Huvos AG, Healey JH (1994) Conservative surgery for giant cell tumors of sacrum. The role of cryosurgery as a supplement to curettage and partial excision. Cancer 74:1253–1260PubMedCrossRef Marcove RC, Sheth DS, Brien EW, Huvos AG, Healey JH (1994) Conservative surgery for giant cell tumors of sacrum. The role of cryosurgery as a supplement to curettage and partial excision. Cancer 74:1253–1260PubMedCrossRef
11.
go back to reference Domovitov SV, Healey JH (2010) Primary malignant giant-cell tumor of bone has high survival rate. Ann Surg Oncol 17:694–701PubMedCrossRef Domovitov SV, Healey JH (2010) Primary malignant giant-cell tumor of bone has high survival rate. Ann Surg Oncol 17:694–701PubMedCrossRef
12.
go back to reference Balke M, Schremper L, Gebert C et al (2008) Giant cell tumor of bone: Treatment and outcome of 214 cases. J Cancer Res Clin Oncol 134:969–978PubMedCrossRef Balke M, Schremper L, Gebert C et al (2008) Giant cell tumor of bone: Treatment and outcome of 214 cases. J Cancer Res Clin Oncol 134:969–978PubMedCrossRef
13.
go back to reference Bertoni F, Bacchini P, Staals E (2003) Malignancy in giant cell tumor of bone. Cancer 97:2520–2529PubMedCrossRef Bertoni F, Bacchini P, Staals E (2003) Malignancy in giant cell tumor of bone. Cancer 97:2520–2529PubMedCrossRef
14.
go back to reference Lee C, Espinosa I, Jensen KC et al (2008) Gene expression profiling identifies p63 as a diagnostic marker for giant cell tumor of bone. Mod Pathol 21:531–539PubMedCrossRef Lee C, Espinosa I, Jensen KC et al (2008) Gene expression profiling identifies p63 as a diagnostic marker for giant cell tumor of bone. Mod Pathol 21:531–539PubMedCrossRef
15.
go back to reference Moskovszky L, Dezsö K, Athanasou NA et al (2010) Centrosome abnormalities in giant cell tumor of bone: Possible association with chromosomal instability. Mod Pathol 23:359–366PubMedCrossRef Moskovszky L, Dezsö K, Athanasou NA et al (2010) Centrosome abnormalities in giant cell tumor of bone: Possible association with chromosomal instability. Mod Pathol 23:359–366PubMedCrossRef
16.
go back to reference Moerkerke B, Goetghebeur E (2006) Selecting “significant” differentially expressed genes from the combined perspective of the null and the alternative. J Comput Biol 13:1513–1531PubMedCrossRef Moerkerke B, Goetghebeur E (2006) Selecting “significant” differentially expressed genes from the combined perspective of the null and the alternative. J Comput Biol 13:1513–1531PubMedCrossRef
17.
go back to reference Morgan T, Atkins GJ, Trivett MK et al (2005) Molecular profiling of giant cell tumor of bone and the osteclastic localization of ligand for receptor activator of nuclear factor κ B. Am J Pathol 167:117–128PubMedCentralPubMedCrossRef Morgan T, Atkins GJ, Trivett MK et al (2005) Molecular profiling of giant cell tumor of bone and the osteclastic localization of ligand for receptor activator of nuclear factor κ B. Am J Pathol 167:117–128PubMedCentralPubMedCrossRef
18.
go back to reference Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19PubMedCrossRef Hocking AM, Shinomura T, McQuillan DJ (1998) Leucine-rich repeat glycoproteins of the extracellular matrix. Matrix Biol 17:1–19PubMedCrossRef
19.
go back to reference Pupa SM, Ménard S, Forti S, Tagliabe E (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267PubMedCrossRef Pupa SM, Ménard S, Forti S, Tagliabe E (2002) New insights into the role of extracellular matrix during tumor onset and progression. J Cell Physiol 192:259–267PubMedCrossRef
20.
go back to reference Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 31:21305–21309CrossRef Schaefer L, Iozzo RV (2008) Biological functions of the small leucine-rich proteoglycans: from genetics to signal transduction. J Biol Chem 31:21305–21309CrossRef
21.
go back to reference Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743PubMedCentralPubMedCrossRef Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targeted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743PubMedCentralPubMedCrossRef
22.
go back to reference Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286PubMedCentralPubMedCrossRef Chakravarti S, Magnuson T, Lass JH, Jepsen KJ, LaMantia C, Carroll H (1998) Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican. J Cell Biol 141:1277–1286PubMedCentralPubMedCrossRef
24.
go back to reference Kaname S, Ruoslahti E (1996) Betaglycan has multiple binding sites for transforming growth factor-beta 1. Biochem J 315:815–820PubMedCentralPubMed Kaname S, Ruoslahti E (1996) Betaglycan has multiple binding sites for transforming growth factor-beta 1. Biochem J 315:815–820PubMedCentralPubMed
25.
go back to reference Cabello-Verrugio C, Brandan E (2007) A novel modulatory mechanism of transforming growth factor-β signaling through decorin and LRP-1. J Biol Chem 282:18842–18850PubMedCrossRef Cabello-Verrugio C, Brandan E (2007) A novel modulatory mechanism of transforming growth factor-β signaling through decorin and LRP-1. J Biol Chem 282:18842–18850PubMedCrossRef
27.
go back to reference Zhu JX, Goldoni S, Bix G et al (2005) Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis. J Biol Chem 280:32468–32479PubMedCrossRef Zhu JX, Goldoni S, Bix G et al (2005) Decorin evokes protracted internalization and degradation of the epidermal growth factor receptor via caveolar endocytosis. J Biol Chem 280:32468–32479PubMedCrossRef
28.
go back to reference Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN (2008) Lumican, a small leucine-rich proteoglycan. IUBMB Life 60(12):818–823PubMedCrossRef Nikitovic D, Katonis P, Tsatsakis A, Karamanos NK, Tzanakakis GN (2008) Lumican, a small leucine-rich proteoglycan. IUBMB Life 60(12):818–823PubMedCrossRef
29.
go back to reference Vuillermoz B, Khoruzhenko A, D’Onofrio MF et al (2004) The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 296:294–306PubMedCrossRef Vuillermoz B, Khoruzhenko A, D’Onofrio MF et al (2004) The small leucine-rich proteoglycan lumican inhibits melanoma progression. Exp Cell Res 296:294–306PubMedCrossRef
30.
go back to reference Troup S, Njue C, Kliewer EV et al (2003) Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res 9:207–214PubMed Troup S, Njue C, Kliewer EV et al (2003) Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative invasive breast cancer. Clin Cancer Res 9:207–214PubMed
31.
go back to reference Nikitovic D, Berdiaki A, Zafiropoulos A et al (2008) Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells. FEBS J 275(2):350–361PubMedCrossRef Nikitovic D, Berdiaki A, Zafiropoulos A et al (2008) Lumican expression is positively correlated with the differentiation and negatively with the growth of human osteosarcoma cells. FEBS J 275(2):350–361PubMedCrossRef
32.
go back to reference Knowles HJ, Athanasou NA (2009) Canonical and non-canonical pathways of osteoclast formation. Histol Histopathol 24(3):337–346PubMed Knowles HJ, Athanasou NA (2009) Canonical and non-canonical pathways of osteoclast formation. Histol Histopathol 24(3):337–346PubMed
33.
go back to reference Wallenius V, Hisaoka M, Helou K et al (2000) Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol 156(3):821–829PubMedCentralPubMedCrossRef Wallenius V, Hisaoka M, Helou K et al (2000) Overexpression of the hepatocyte growth factor (HGF) receptor (Met) and presence of a truncated and activated intracellular HGF receptor fragment in locally aggressive/malignant human musculoskeletal tumors. Am J Pathol 156(3):821–829PubMedCentralPubMedCrossRef
34.
go back to reference Taylor RM, Kashima TG, Knowles HJ, Athanasou NA (2012) VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Lab Invest 92(10):1398–1406PubMedCrossRef Taylor RM, Kashima TG, Knowles HJ, Athanasou NA (2012) VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. Lab Invest 92(10):1398–1406PubMedCrossRef
35.
go back to reference Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34(1):57–64PubMedCrossRef Itonaga I, Sabokbar A, Sun SG, Kudo O, Danks L, Ferguson D, Fujikawa Y, Athanasou NA (2004) Transforming growth factor-beta induces osteoclast formation in the absence of RANKL. Bone 34(1):57–64PubMedCrossRef
36.
go back to reference Kumta SM, Huang L, Cheng YY, Chow LT, Lee KM, Zheng MH (2003) Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci 73(11):1427–1436PubMedCrossRef Kumta SM, Huang L, Cheng YY, Chow LT, Lee KM, Zheng MH (2003) Expression of VEGF and MMP-9 in giant cell tumor of bone and other osteolytic lesions. Life Sci 73(11):1427–1436PubMedCrossRef
37.
go back to reference Knowles HJ, Athanasou NA (2008) Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215(1):56–66PubMedCrossRef Knowles HJ, Athanasou NA (2008) Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J Pathol 215(1):56–66PubMedCrossRef
38.
go back to reference Neill E (2012) T, Painter H, Buraschi S et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 287(8):5492–5506PubMedCentralPubMedCrossRef Neill E (2012) T, Painter H, Buraschi S et al. Decorin antagonizes the angiogenic network: concurrent inhibition of Met, hypoxia inducible factor 1α, vascular endothelial growth factor A, and induction of thrombospondin-1 and TIMP3. J Biol Chem 287(8):5492–5506PubMedCentralPubMedCrossRef
39.
go back to reference Catherino WH, Leppert PC, Stenmark MH et al (2004) Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 40:204–217PubMedCentralPubMedCrossRef Catherino WH, Leppert PC, Stenmark MH et al (2004) Reduced dermatopontin expression is a molecular link between uterine leiomyomas and keloids. Genes Chromosomes Cancer 40:204–217PubMedCentralPubMedCrossRef
40.
go back to reference Okamoto O, Fujiwara S, Abe M, Sato Y (1999) Dermatopontin interacts with transforming growth factor β and enhances its biological activity. Biochem J 337:537–541PubMedCentralPubMedCrossRef Okamoto O, Fujiwara S, Abe M, Sato Y (1999) Dermatopontin interacts with transforming growth factor β and enhances its biological activity. Biochem J 337:537–541PubMedCentralPubMedCrossRef
41.
go back to reference Okamoto O, Fujiwara S (2006) Dermatopontin, a novel player in the biology of the extracellular matrix. Connect Tissue Res 47(4):177–189PubMedCrossRef Okamoto O, Fujiwara S (2006) Dermatopontin, a novel player in the biology of the extracellular matrix. Connect Tissue Res 47(4):177–189PubMedCrossRef
42.
go back to reference Groner AC, Meylan S, Ciuffi A et al (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6:e1000869PubMedCentralPubMedCrossRef Groner AC, Meylan S, Ciuffi A et al (2010) KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet 6:e1000869PubMedCentralPubMedCrossRef
44.
go back to reference Johnson HJ, Rosenberg L, Choi HU, Garza S, Höök M, Neame PJ (1997) Characterization of epiphycan, a small proteoglycan with a leucine-rich repeat core protein. J Biol Chem 272:18709–18717PubMedCrossRef Johnson HJ, Rosenberg L, Choi HU, Garza S, Höök M, Neame PJ (1997) Characterization of epiphycan, a small proteoglycan with a leucine-rich repeat core protein. J Biol Chem 272:18709–18717PubMedCrossRef
46.
go back to reference Chung YS, Baylink DJ, Srivastava AK et al (2004) Effects of secreted frizzled-related protein 3 on osteoblasts in vitro. J Bone Miner Res 19(9):1395–1402PubMedCrossRef Chung YS, Baylink DJ, Srivastava AK et al (2004) Effects of secreted frizzled-related protein 3 on osteoblasts in vitro. J Bone Miner Res 19(9):1395–1402PubMedCrossRef
Metadata
Title
Gene expression profiling of giant cell tumor of bone reveals downregulation of extracellular matrix components decorin and lumican associated with lung metastasis
Authors
M. Lieveld
E. Bodson
G. De Boeck
B. Nouman
A. M. Cleton-Jansen
E. Korsching
M. S. Benassi
P. Picci
G. Sys
B. Poffyn
N. A. Athanasou
P. C. W. Hogendoorn
R. G. Forsyth
Publication date
01-12-2014
Publisher
Springer Berlin Heidelberg
Published in
Virchows Archiv / Issue 6/2014
Print ISSN: 0945-6317
Electronic ISSN: 1432-2307
DOI
https://doi.org/10.1007/s00428-014-1666-7

Other articles of this Issue 6/2014

Virchows Archiv 6/2014 Go to the issue