Skip to main content
Top
Published in: BMC Cancer 1/2007

Open Access 01-12-2007 | Research article

Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

Authors: Uma R Chandran, Changqing Ma, Rajiv Dhir, Michelle Bisceglia, Maureen Lyons-Weiler, Wenjing Liang, George Michalopoulos, Michael Becich, Federico A Monzon

Published in: BMC Cancer | Issue 1/2007

Login to get access

Abstract

Background

Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets.

Methods

Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors.

Results

The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1).

Conclusion

We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer.
Appendix
Available only for authorised users
Literature
1.
go back to reference American Cancer Society: Cancer facts and figures, 2006. 2006, Atlanta , American Cancer Society American Cancer Society: Cancer facts and figures, 2006. 2006, Atlanta , American Cancer Society
2.
go back to reference Logothetis CJ, Lin SH: Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005, 5 (1): 21-28. 10.1038/nrc1528.CrossRefPubMed Logothetis CJ, Lin SH: Osteoblasts in prostate cancer metastasis to bone. Nat Rev Cancer. 2005, 5 (1): 21-28. 10.1038/nrc1528.CrossRefPubMed
3.
go back to reference Stewart DA, Cooper CR, Sikes RA: Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol. 2004, 2: 2-10.1186/1477-7827-2-2.CrossRefPubMedPubMedCentral Stewart DA, Cooper CR, Sikes RA: Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol. 2004, 2: 2-10.1186/1477-7827-2-2.CrossRefPubMedPubMedCentral
4.
go back to reference Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 2001, 412 (6849): 822-826. 10.1038/35090585.CrossRefPubMed Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K, Pienta KJ, Rubin MA, Chinnaiyan AM: Delineation of prognostic biomarkers in prostate cancer. Nature. 2001, 412 (6849): 822-826. 10.1038/35090585.CrossRefPubMed
5.
go back to reference Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, Finkelstein S, Michalopoulos G, Becich M: Gene expression analysis of prostate cancers. Mol Carcinog. 2002, 33 (1): 25-35. 10.1002/mc.10018.CrossRefPubMed Luo JH, Yu YP, Cieply K, Lin F, Deflavia P, Dhir R, Finkelstein S, Michalopoulos G, Becich M: Gene expression analysis of prostate cancers. Mol Carcinog. 2002, 33 (1): 25-35. 10.1002/mc.10018.CrossRefPubMed
6.
go back to reference Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, Michalopoulos G, Becich M, Luo JH: Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004, 22 (14): 2790-2799. 10.1200/JCO.2004.05.158.CrossRefPubMed Yu YP, Landsittel D, Jing L, Nelson J, Ren B, Liu L, McDonald C, Thomas R, Dhir R, Finkelstein S, Michalopoulos G, Becich M, Luo JH: Gene expression alterations in prostate cancer predicting tumor aggression and preceding development of malignancy. J Clin Oncol. 2004, 22 (14): 2790-2799. 10.1200/JCO.2004.05.158.CrossRefPubMed
7.
go back to reference Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J: Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer. 2005, 5 (1): 45-10.1186/1471-2407-5-45.CrossRefPubMedPubMedCentral Chandran UR, Dhir R, Ma C, Michalopoulos G, Becich M, Gilbertson J: Differences in gene expression in prostate cancer, normal appearing prostate tissue adjacent to cancer and prostate tissue from cancer free organ donors. BMC Cancer. 2005, 5 (1): 45-10.1186/1471-2407-5-45.CrossRefPubMedPubMedCentral
8.
go back to reference Chetcuti A, Margan S, Mann S, Russell P, Handelsman D, Rogers J, Dong Q: Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate. 2001, 47 (2): 132-140. 10.1002/pros.1056.CrossRefPubMed Chetcuti A, Margan S, Mann S, Russell P, Handelsman D, Rogers J, Dong Q: Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate. 2001, 47 (2): 132-140. 10.1002/pros.1056.CrossRefPubMed
9.
go back to reference Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1 (2): 203-209. 10.1016/S1535-6108(02)00030-2.CrossRefPubMed Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D'Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1 (2): 203-209. 10.1016/S1535-6108(02)00030-2.CrossRefPubMed
10.
go back to reference LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 2002, 62 (15): 4499-4506.PubMed LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res. 2002, 62 (15): 4499-4506.PubMed
11.
go back to reference True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM, Gelmann E, Datta M, Mostaghel E, Knudsen B, Lange P, Vessella R, Lin D, Hood L, Nelson PS: A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci U S A. 2006, 103 (29): 10991-10996. 10.1073/pnas.0603678103.CrossRefPubMedPubMedCentral True L, Coleman I, Hawley S, Huang CY, Gifford D, Coleman R, Beer TM, Gelmann E, Datta M, Mostaghel E, Knudsen B, Lange P, Vessella R, Lin D, Hood L, Nelson PS: A molecular correlate to the Gleason grading system for prostate adenocarcinoma. Proc Natl Acad Sci U S A. 2006, 103 (29): 10991-10996. 10.1073/pnas.0603678103.CrossRefPubMedPubMedCentral
12.
go back to reference Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, Reuter V, Gerald WL: Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004, 164 (1): 217-227.CrossRefPubMedPubMedCentral Holzbeierlein J, Lal P, LaTulippe E, Smith A, Satagopan J, Zhang L, Ryan C, Smith S, Scher H, Scardino P, Reuter V, Gerald WL: Gene expression analysis of human prostate carcinoma during hormonal therapy identifies androgen-responsive genes and mechanisms of therapy resistance. Am J Pathol. 2004, 164 (1): 217-227.CrossRefPubMedPubMedCentral
13.
go back to reference Bismar TA, Demichelis F, Riva A, Kim R, Varambally S, He L, Kutok J, Aster JC, Tang J, Kuefer R, Hofer MD, Febbo PG, Chinnaiyan AM, Rubin MA: Defining aggressive prostate cancer using a 12-gene model. Neoplasia. 2006, 8 (1): 59-68. 10.1593/neo.05664.CrossRefPubMedPubMedCentral Bismar TA, Demichelis F, Riva A, Kim R, Varambally S, He L, Kutok J, Aster JC, Tang J, Kuefer R, Hofer MD, Febbo PG, Chinnaiyan AM, Rubin MA: Defining aggressive prostate cancer using a 12-gene model. Neoplasia. 2006, 8 (1): 59-68. 10.1593/neo.05664.CrossRefPubMedPubMedCentral
14.
go back to reference Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP: Increased Expression of Genes Converting Adrenal Androgens to Testosterone in Androgen-Independent Prostate Cancer. Cancer Res. 2006, 66 (5): 2815-2825. 10.1158/0008-5472.CAN-05-4000.CrossRefPubMed Stanbrough M, Bubley GJ, Ross K, Golub TR, Rubin MA, Penning TM, Febbo PG, Balk SP: Increased Expression of Genes Converting Adrenal Androgens to Testosterone in Androgen-Independent Prostate Cancer. Cancer Res. 2006, 66 (5): 2815-2825. 10.1158/0008-5472.CAN-05-4000.CrossRefPubMed
15.
go back to reference Stuart RO, Wachsman W, Berry CC, Wang-Rodriguez J, Wasserman L, Klacansky I, Masys D, Arden K, Goodison S, McClelland M, Wang Y, Sawyers A, Kalcheva I, Tarin D, Mercola D: In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci U S A. 2004, 101 (2): 615-620. 10.1073/pnas.2536479100.CrossRefPubMedPubMedCentral Stuart RO, Wachsman W, Berry CC, Wang-Rodriguez J, Wasserman L, Klacansky I, Masys D, Arden K, Goodison S, McClelland M, Wang Y, Sawyers A, Kalcheva I, Tarin D, Mercola D: In silico dissection of cell-type-associated patterns of gene expression in prostate cancer. Proc Natl Acad Sci U S A. 2004, 101 (2): 615-620. 10.1073/pnas.2536479100.CrossRefPubMedPubMedCentral
16.
go back to reference Ma C, Lyons-Weiler M, Liang W, LaFramboise W, Gilbertson JR, Becich MJ, Monzon FA: In Vitro Transcription Amplification and Labeling Methods Contribute to the Variability of Gene Expression Profiling with DNA Microarrays. J Mol Diagn. 2006, 8 (2): 183-192. 10.2353/jmoldx.2006.050077.CrossRefPubMedPubMedCentral Ma C, Lyons-Weiler M, Liang W, LaFramboise W, Gilbertson JR, Becich MJ, Monzon FA: In Vitro Transcription Amplification and Labeling Methods Contribute to the Variability of Gene Expression Profiling with DNA Microarrays. J Mol Diagn. 2006, 8 (2): 183-192. 10.2353/jmoldx.2006.050077.CrossRefPubMedPubMedCentral
17.
go back to reference Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001, 98 (9): 5116-5121. 10.1073/pnas.091062498.CrossRefPubMedPubMedCentral Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A. 2001, 98 (9): 5116-5121. 10.1073/pnas.091062498.CrossRefPubMedPubMedCentral
19.
go back to reference Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.CrossRefPubMedPubMedCentral Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A. 1998, 95 (25): 14863-14868. 10.1073/pnas.95.25.14863.CrossRefPubMedPubMedCentral
20.
go back to reference Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods. 2001, 25 (4): 402-10.1006/meth.2001.1262.CrossRefPubMed Livak KJ, Schmittgen TD: Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-[Delta][Delta]CT Method. Methods. 2001, 25 (4): 402-10.1006/meth.2001.1262.CrossRefPubMed
21.
go back to reference Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, Macvicar GR, Varambally S, Harwood J, Bismar TA, Kim R, Rubin MA, Pienta KJ: Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004, 64 (24): 9209-9216. 10.1158/0008-5472.CAN-04-2442.CrossRefPubMed Shah RB, Mehra R, Chinnaiyan AM, Shen R, Ghosh D, Zhou M, Macvicar GR, Varambally S, Harwood J, Bismar TA, Kim R, Rubin MA, Pienta KJ: Androgen-independent prostate cancer is a heterogeneous group of diseases: lessons from a rapid autopsy program. Cancer Res. 2004, 64 (24): 9209-9216. 10.1158/0008-5472.CAN-04-2442.CrossRefPubMed
22.
go back to reference Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA: Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002, 26 (7): 926-931. 10.1097/00000478-200207000-00012.CrossRefPubMed Zhou M, Chinnaiyan AM, Kleer CG, Lucas PC, Rubin MA: Alpha-Methylacyl-CoA racemase: a novel tumor marker over-expressed in several human cancers and their precursor lesions. Am J Surg Pathol. 2002, 26 (7): 926-931. 10.1097/00000478-200207000-00012.CrossRefPubMed
23.
go back to reference Weber GF: The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta. 2001, 1552 (2): 61-85.CrossRefPubMed Weber GF: The metastasis gene osteopontin: a candidate target for cancer therapy. Biochim Biophys Acta. 2001, 1552 (2): 61-85.CrossRefPubMed
24.
go back to reference Reinholz MM, Iturria SJ, Ingle JN, Roche PC: Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat. 2002, 74 (3): 255-269. 10.1023/A:1016339120506.CrossRefPubMed Reinholz MM, Iturria SJ, Ingle JN, Roche PC: Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res Treat. 2002, 74 (3): 255-269. 10.1023/A:1016339120506.CrossRefPubMed
25.
go back to reference Hotte SJ, Winquist EW, Stitt L, Wilson SM, Chambers AF: Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer. 2002, 95 (3): 506-512. 10.1002/cncr.10709.CrossRefPubMed Hotte SJ, Winquist EW, Stitt L, Wilson SM, Chambers AF: Plasma osteopontin: associations with survival and metastasis to bone in men with hormone-refractory prostate carcinoma. Cancer. 2002, 95 (3): 506-512. 10.1002/cncr.10709.CrossRefPubMed
26.
go back to reference Wai PY, Kuo PC: The role of Osteopontin in tumor metastasis. J Surg Res. 2004, 121 (2): 228-241. 10.1016/j.jss.2004.03.028.CrossRefPubMed Wai PY, Kuo PC: The role of Osteopontin in tumor metastasis. J Surg Res. 2004, 121 (2): 228-241. 10.1016/j.jss.2004.03.028.CrossRefPubMed
27.
go back to reference Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF: The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001, 1 (5): 621-632. 10.2174/1566524013363339.CrossRefPubMed Furger KA, Menon RK, Tuck AB, Bramwell VH, Chambers AF: The functional and clinical roles of osteopontin in cancer and metastasis. Curr Mol Med. 2001, 1 (5): 621-632. 10.2174/1566524013363339.CrossRefPubMed
28.
go back to reference Forootan SS, Foster CS, Aachi VR, Adamson J, Smith PH, Lin K, Ke Y: Prognostic significance of osteopontin expression in human prostate cancer. Int J Cancer. 2006, 118 (9): 2255-2261. 10.1002/ijc.21619.CrossRefPubMed Forootan SS, Foster CS, Aachi VR, Adamson J, Smith PH, Lin K, Ke Y: Prognostic significance of osteopontin expression in human prostate cancer. Int J Cancer. 2006, 118 (9): 2255-2261. 10.1002/ijc.21619.CrossRefPubMed
29.
go back to reference Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV, Lyubimov A, Costa RH: Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 2006, 66 (3): 1712-1720. 10.1158/0008-5472.CAN-05-3138.CrossRefPubMedPubMedCentral Kalin TV, Wang IC, Ackerson TJ, Major ML, Detrisac CJ, Kalinichenko VV, Lyubimov A, Costa RH: Increased levels of the FoxM1 transcription factor accelerate development and progression of prostate carcinomas in both TRAMP and LADY transgenic mice. Cancer Res. 2006, 66 (3): 1712-1720. 10.1158/0008-5472.CAN-05-3138.CrossRefPubMedPubMedCentral
30.
go back to reference Shimada K, Nakamura M, Ishida E, Konishi N: Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer. Histol Histopathol. 2006, 21 (4): 415-422.PubMed Shimada K, Nakamura M, Ishida E, Konishi N: Molecular roles of MAP kinases and FADD phosphorylation in prostate cancer. Histol Histopathol. 2006, 21 (4): 415-422.PubMed
31.
go back to reference Hollingshead D, Lewis DA, Mirnics K: Platform influence on DNA microarray data in postmortem brain research. Neurobiol Dis. 2005, 18 (3): 649-655. 10.1016/j.nbd.2004.10.020.CrossRefPubMed Hollingshead D, Lewis DA, Mirnics K: Platform influence on DNA microarray data in postmortem brain research. Neurobiol Dis. 2005, 18 (3): 649-655. 10.1016/j.nbd.2004.10.020.CrossRefPubMed
32.
go back to reference Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P: Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 2005, 33 (18): 5914-5923. 10.1093/nar/gki890.CrossRefPubMedPubMedCentral Barnes M, Freudenberg J, Thompson S, Aronow B, Pavlidis P: Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Res. 2005, 33 (18): 5914-5923. 10.1093/nar/gki890.CrossRefPubMedPubMedCentral
33.
go back to reference Setlur SR, Rubin MA: Current thoughts on the role of the androgen receptor and prostate cancer progression. Adv Anat Pathol. 2005, 12 (5): 265-270. 10.1097/01.pap.0000184179.50672.f7.CrossRefPubMed Setlur SR, Rubin MA: Current thoughts on the role of the androgen receptor and prostate cancer progression. Adv Anat Pathol. 2005, 12 (5): 265-270. 10.1097/01.pap.0000184179.50672.f7.CrossRefPubMed
34.
go back to reference Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL: Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004, 10 (1): 33-39. 10.1038/nm972.CrossRefPubMed Chen CD, Welsbie DS, Tran C, Baek SH, Chen R, Vessella R, Rosenfeld MG, Sawyers CL: Molecular determinants of resistance to antiandrogen therapy. Nat Med. 2004, 10 (1): 33-39. 10.1038/nm972.CrossRefPubMed
35.
go back to reference Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI: Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004, 41 (3): 150-163. 10.1002/mc.20051.CrossRefPubMed Sirotnak FM, She Y, Khokhar NZ, Hayes P, Gerald W, Scher HI: Microarray analysis of prostate cancer progression to reduced androgen dependence: studies in unique models contrasts early and late molecular events. Mol Carcinog. 2004, 41 (3): 150-163. 10.1002/mc.20051.CrossRefPubMed
36.
go back to reference Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM: Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res. 2000, 60 (21): 6134-6141.PubMed Amler LC, Agus DB, LeDuc C, Sapinoso ML, Fox WD, Kern S, Lee D, Wang V, Leysens M, Higgins B, Martin J, Gerald W, Dracopoli N, Cordon-Cardo C, Scher HI, Hampton GM: Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Res. 2000, 60 (21): 6134-6141.PubMed
37.
go back to reference Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R, Goldberger N, Elkahloun AG, Willi N, Koivisto P, Ferhle W, Raffeld M, Sauter G, Kallioniemi OP: Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 2002, 62 (5): 1256-1260.PubMed Mousses S, Bubendorf L, Wagner U, Hostetter G, Kononen J, Cornelison R, Goldberger N, Elkahloun AG, Willi N, Koivisto P, Ferhle W, Raffeld M, Sauter G, Kallioniemi OP: Clinical validation of candidate genes associated with prostate cancer progression in the CWR22 model system using tissue microarrays. Cancer Res. 2002, 62 (5): 1256-1260.PubMed
38.
go back to reference Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003, 3 (6): 537-549. 10.1016/S1535-6108(03)00132-6.CrossRefPubMed Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J: A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003, 3 (6): 537-549. 10.1016/S1535-6108(03)00132-6.CrossRefPubMed
39.
go back to reference Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. Nat Genet. 2004, 36 (10): 1090-1098.CrossRefPubMed Segal E, Friedman N, Koller D, Regev A: A module map showing conditional activity of expression modules in cancer. Nat Genet. 2004, 36 (10): 1090-1098.CrossRefPubMed
40.
go back to reference Hulboy DL, Matrisian LM, Crawford HC: Loss of JunB activity enhances stromelysin 1 expression in a model of the epithelial-to-mesenchymal transition of mouse skin tumors. Mol Cell Biol. 2001, 21 (16): 5478-5487. 10.1128/MCB.21.16.5478-5487.2001.CrossRefPubMedPubMedCentral Hulboy DL, Matrisian LM, Crawford HC: Loss of JunB activity enhances stromelysin 1 expression in a model of the epithelial-to-mesenchymal transition of mouse skin tumors. Mol Cell Biol. 2001, 21 (16): 5478-5487. 10.1128/MCB.21.16.5478-5487.2001.CrossRefPubMedPubMedCentral
41.
go back to reference Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D: S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 2006, 312 (2): 184-197. 10.1016/j.yexcr.2005.10.013.CrossRefPubMed Hermani A, De Servi B, Medunjanin S, Tessier PA, Mayer D: S100A8 and S100A9 activate MAP kinase and NF-kappaB signaling pathways and trigger translocation of RAGE in human prostate cancer cells. Exp Cell Res. 2006, 312 (2): 184-197. 10.1016/j.yexcr.2005.10.013.CrossRefPubMed
42.
go back to reference Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D: Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 2005, 11 (14): 5146-5152. 10.1158/1078-0432.CCR-05-0352.CrossRefPubMed Hermani A, Hess J, De Servi B, Medunjanin S, Grobholz R, Trojan L, Angel P, Mayer D: Calcium-binding proteins S100A8 and S100A9 as novel diagnostic markers in human prostate cancer. Clin Cancer Res. 2005, 11 (14): 5146-5152. 10.1158/1078-0432.CCR-05-0352.CrossRefPubMed
43.
go back to reference Zlot C, Ingle G, Hongo J, Yang S, Sheng Z, Schwall R, Paoni N, Wang F, Peale FV, Gerritsen ME: Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor. J Biol Chem. 2003, 278 (48): 47654-47659. 10.1074/jbc.M301353200.CrossRefPubMed Zlot C, Ingle G, Hongo J, Yang S, Sheng Z, Schwall R, Paoni N, Wang F, Peale FV, Gerritsen ME: Stanniocalcin 1 is an autocrine modulator of endothelial angiogenic responses to hepatocyte growth factor. J Biol Chem. 2003, 278 (48): 47654-47659. 10.1074/jbc.M301353200.CrossRefPubMed
44.
go back to reference McCudden CR, Majewski A, Chakrabarti S, Wagner GF: Co-localization of stanniocalcin-1 ligand and receptor in human breast carcinomas. Mol Cell Endocrinol. 2004, 213 (2): 167-172. 10.1016/j.mce.2003.10.042.CrossRefPubMed McCudden CR, Majewski A, Chakrabarti S, Wagner GF: Co-localization of stanniocalcin-1 ligand and receptor in human breast carcinomas. Mol Cell Endocrinol. 2004, 213 (2): 167-172. 10.1016/j.mce.2003.10.042.CrossRefPubMed
45.
go back to reference Chirgwin JM, Mohammad KS, Guise TA: Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact. 2004, 4 (3): 308-318.PubMed Chirgwin JM, Mohammad KS, Guise TA: Tumor-bone cellular interactions in skeletal metastases. J Musculoskelet Neuronal Interact. 2004, 4 (3): 308-318.PubMed
46.
go back to reference Stavropoulou P, Gregorakis AK, Plebani M, Scorilas A: Expression analysis and prognostic significance of human kallikrein 11 in prostate cancer. Clin Chim Acta. 2005, 357 (2): 190-195. 10.1016/j.cccn.2005.03.026.CrossRefPubMed Stavropoulou P, Gregorakis AK, Plebani M, Scorilas A: Expression analysis and prognostic significance of human kallikrein 11 in prostate cancer. Clin Chim Acta. 2005, 357 (2): 190-195. 10.1016/j.cccn.2005.03.026.CrossRefPubMed
47.
go back to reference Lin DW, Coleman IM, Hawley S, Dumpit R, Gifford D, Kezele P, Hung H, Knudsen BS, Kristal AR, Nelson PS: Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J Clin Oncol. 2006, 24 (23): 3763-3770. 10.1200/JCO.2005.05.1458.CrossRefPubMed Lin DW, Coleman IM, Hawley S, Dumpit R, Gifford D, Kezele P, Hung H, Knudsen BS, Kristal AR, Nelson PS: Influence of surgical manipulation on prostate gene expression: implications for molecular correlates of treatment effects and disease prognosis. J Clin Oncol. 2006, 24 (23): 3763-3770. 10.1200/JCO.2005.05.1458.CrossRefPubMed
Metadata
Title
Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process
Authors
Uma R Chandran
Changqing Ma
Rajiv Dhir
Michelle Bisceglia
Maureen Lyons-Weiler
Wenjing Liang
George Michalopoulos
Michael Becich
Federico A Monzon
Publication date
01-12-2007
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2007
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-7-64

Other articles of this Issue 1/2007

BMC Cancer 1/2007 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine