Skip to main content
Top
Published in: Neurotherapeutics 3/2016

01-07-2016 | Review

Gene Editing for Treatment of Neurological Infections

Authors: Martyn K. White, Rafal Kaminski, Hassen Wollebo, Wenhui Hu, Thomas Malcolm, Kamel Khalili

Published in: Neurotherapeutics | Issue 3/2016

Login to get access

Abstract

The study of neurological infections by viruses defines the field of neurovirology, which has emerged in the last 30 years and was founded upon the discovery of a number of viruses capable of infecting the human nervous system. Studies have focused on the molecular and biological basis of viral neurological diseases with the aim of revealing new therapeutic options. The first studies of neurovirological infections can be traced back to the discovery that some viruses have an affinity for the nervous system with research into rabies by Louis Pasteur and others in the 1880s. Today, the immense public health impact of neurovirological infections is illustrated by diseases such as neuroAIDS, progressive multifocal leukoencephalopathy, and viral encephalitis. Recent research has seen the development of powerful new techniques for gene editing that promise revolutionary opportunities for the development of novel therapeutic options. In particular, clustered regulatory interspaced short palindromic repeat-associated 9 system provides an effective, highly specific and versatile tool for targeting DNA viruses that are beginning to allow the development of such new approaches. In this short review, we discuss these recent developments, how they pertain to neurological infections, and future prospects.
Appendix
Available only for authorised users
Literature
3.
go back to reference Del Valle L, Piña-Oviedo S. HIV disorders of the brain: pathology and pathogenesis. Front Biosci 2006;11:718-732.CrossRefPubMed Del Valle L, Piña-Oviedo S. HIV disorders of the brain: pathology and pathogenesis. Front Biosci 2006;11:718-732.CrossRefPubMed
6.
go back to reference Tavazzi E, White MK, Khalili K. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 2012;22:8-32.CrossRef Tavazzi E, White MK, Khalili K. Progressive multifocal leukoencephalopathy: clinical and molecular aspects. Rev Med Virol 2012;22:8-32.CrossRef
7.
10.
go back to reference Rappaport J, Volsky DJ. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol 2015;21:235-241.CrossRefPubMedPubMedCentral Rappaport J, Volsky DJ. Role of the macrophage in HIV-associated neurocognitive disorders and other comorbidities in patients on effective antiretroviral treatment. J Neurovirol 2015;21:235-241.CrossRefPubMedPubMedCentral
11.
go back to reference Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K. CRISPR/Cas9 System as an agent for eliminating polyomavirus JC infection. PLoS One 2015;10:e0136046.CrossRefPubMedPubMedCentral Wollebo HS, Bellizzi A, Kaminski R, Hu W, White MK, Khalili K. CRISPR/Cas9 System as an agent for eliminating polyomavirus JC infection. PLoS One 2015;10:e0136046.CrossRefPubMedPubMedCentral
12.
go back to reference Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 2015;21:310-321.CrossRefPubMedPubMedCentral Khalili K, Kaminski R, Gordon J, Cosentino L, Hu W. Genome editing strategies: potential tools for eradicating HIV-1/AIDS. J Neurovirol 2015;21:310-321.CrossRefPubMedPubMedCentral
13.
go back to reference Pires de Mello CP, Bloom DC, Paixão IC. Herpes simplex virus type-1: replication, latency, reactivation and its antiviral targets. Antivir Ther 2016 Jan 4 [Epub ahead of print]. Pires de Mello CP, Bloom DC, Paixão IC. Herpes simplex virus type-1: replication, latency, reactivation and its antiviral targets. Antivir Ther 2016 Jan 4 [Epub ahead of print].
14.
go back to reference Berger A, Shahar T, Margalit N. Post-craniotomy herpes simplex type 2 encephalitis: case report and literature review. World Neurosurg 2015;pii:S1878-8750(15)01724-6. Berger A, Shahar T, Margalit N. Post-craniotomy herpes simplex type 2 encephalitis: case report and literature review. World Neurosurg 2015;pii:S1878-8750(15)01724-6.
15.
go back to reference Morgello S, Cho ES, Nielsen S, Devinsky O, Petito CK. Cytomegalovirus encephalitis in patients with acquired immunodeficiency syndrome: an autopsy study of 30 cases and a review of the literature. Hum Pathol 1987;18:289-297.CrossRefPubMed Morgello S, Cho ES, Nielsen S, Devinsky O, Petito CK. Cytomegalovirus encephalitis in patients with acquired immunodeficiency syndrome: an autopsy study of 30 cases and a review of the literature. Hum Pathol 1987;18:289-297.CrossRefPubMed
16.
go back to reference Mamidi A, DeSimone JA, Pomerantz RJ. Central nervous system infections in individuals with HIV-1 infection. J Neurovirol 2002;8:158-167.CrossRefPubMed Mamidi A, DeSimone JA, Pomerantz RJ. Central nervous system infections in individuals with HIV-1 infection. J Neurovirol 2002;8:158-167.CrossRefPubMed
17.
go back to reference Huang YC, Huang SL, Chen SP, et al. Adenovirus infection associated with central nervous system dysfunction in children. J Clin Virol 2013;57:300-304.CrossRefPubMed Huang YC, Huang SL, Chen SP, et al. Adenovirus infection associated with central nervous system dysfunction in children. J Clin Virol 2013;57:300-304.CrossRefPubMed
18.
go back to reference Grahn A, Studahl M. Varicella-zoster virus infections of the central nervous system—prognosis, diagnostics and treatment. J Infect 2015;71:281-293.CrossRefPubMed Grahn A, Studahl M. Varicella-zoster virus infections of the central nervous system—prognosis, diagnostics and treatment. J Infect 2015;71:281-293.CrossRefPubMed
19.
go back to reference White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016 Jan 31 [Epub ahead of print]. White MK, Khalili K. CRISPR/Cas9 and cancer targets: future possibilities and present challenges. Oncotarget 2016 Jan 31 [Epub ahead of print].
20.
go back to reference White MK, Hu W, Khalili K. The CRISPR/Cas9 genome editing methodology as a weapon against human viruses. Discov Med 2015;19:255-262.PubMedPubMedCentral White MK, Hu W, Khalili K. The CRISPR/Cas9 genome editing methodology as a weapon against human viruses. Discov Med 2015;19:255-262.PubMedPubMedCentral
21.
go back to reference Kim YG, Li L, Chandrasegaran S. Insertion and deletion mutants of FokI restriction endonuclease. J Biol Chem 1994;269:31978-31982.PubMed Kim YG, Li L, Chandrasegaran S. Insertion and deletion mutants of FokI restriction endonuclease. J Biol Chem 1994;269:31978-31982.PubMed
22.
24.
go back to reference Wright DA, Li T, Yang B, Spalding MH. TALEN-mediated genome editing: prospects and perspectives. Biochem J 2014;462:15-24.CrossRefPubMed Wright DA, Li T, Yang B, Spalding MH. TALEN-mediated genome editing: prospects and perspectives. Biochem J 2014;462:15-24.CrossRefPubMed
25.
go back to reference Ousterout DG, Gersbach CA. The development of TALE nucleases for biotechnology. Methods Mol Biol 2016;1338:27-42.CrossRefPubMed Ousterout DG, Gersbach CA. The development of TALE nucleases for biotechnology. Methods Mol Biol 2016;1338:27-42.CrossRefPubMed
26.
go back to reference Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096. Doudna JA, Charpentier E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 2014;346:1258096.
28.
go back to reference Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 2015;13:41-50.CrossRef Bolukbasi MF, Gupta A, Wolfe SA. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 2015;13:41-50.CrossRef
31.
go back to reference Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-1712.CrossRefPubMed Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007;315:1709-1712.CrossRefPubMed
32.
go back to reference Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011;45:273-997.CrossRefPubMed Bhaya D, Davison M, Barrangou R. CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 2011;45:273-997.CrossRefPubMed
33.
go back to reference Canver MC, Bauer DE, Dass A, et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 2014;289:21312-21324.CrossRefPubMedPubMedCentral Canver MC, Bauer DE, Dass A, et al. Characterization of genomic deletion efficiency mediated by clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 nuclease system in mammalian cells. J Biol Chem 2014;289:21312-21324.CrossRefPubMedPubMedCentral
34.
go back to reference Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-771.CrossRefPubMed Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 2015;163:759-771.CrossRefPubMed
35.
go back to reference Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015;60:385-397.CrossRefPubMed Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-Cas systems. Mol Cell 2015;60:385-397.CrossRefPubMed
36.
go back to reference Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014;111:11461-11466.CrossRefPubMedPubMedCentral Hu W, Kaminski R, Yang F, et al. RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection. Proc Natl Acad Sci USA 2014;111:11461-11466.CrossRefPubMedPubMedCentral
37.
go back to reference Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016;351:84-88.CrossRefPubMed Slaymaker IM, Gao L, Zetsche B, Scott DA, Yan WX, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science 2016;351:84-88.CrossRefPubMed
38.
go back to reference Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016;529:490-495.CrossRefPubMedPubMedCentral Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 2016;529:490-495.CrossRefPubMedPubMedCentral
39.
go back to reference Fois AF, Brew BJ. The potential of the CNS as a reservoir for HIV-1 infection: Implications for HIV eradication. Curr HIV/AIDS Rep 2015;12:299-303.CrossRefPubMed Fois AF, Brew BJ. The potential of the CNS as a reservoir for HIV-1 infection: Implications for HIV eradication. Curr HIV/AIDS Rep 2015;12:299-303.CrossRefPubMed
42.
go back to reference Liao HK, Gu Y, Diaz A, Marlett J, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015;6:6413.CrossRefPubMed Liao HK, Gu Y, Diaz A, Marlett J, et al. Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nat Commun 2015;6:6413.CrossRefPubMed
43.
go back to reference Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012;487:482-485.CrossRefPubMedPubMedCentral Archin NM, Liberty AL, Kashuba AD, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012;487:482-485.CrossRefPubMedPubMedCentral
44.
go back to reference Zhang Y, Yin C, Zhang T, Li F, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 2015;5:16277.CrossRefPubMedPubMedCentral Zhang Y, Yin C, Zhang T, Li F, et al. CRISPR/gRNA-directed synergistic activation mediator (SAM) induces specific, persistent and robust reactivation of the HIV-1 latent reservoirs. Sci Rep 2015;5:16277.CrossRefPubMedPubMedCentral
45.
go back to reference Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 2016;24:499-507.CrossRefPubMed Limsirichai P, Gaj T, Schaffer DV. CRISPR-mediated activation of latent HIV-1 expression. Mol Ther 2016;24:499-507.CrossRefPubMed
46.
go back to reference Saayman SM, Lazar DC, Scott TA, et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther 2016;24:488-498.CrossRefPubMedPubMedCentral Saayman SM, Lazar DC, Scott TA, et al. Potent and targeted activation of latent HIV-1 using the CRISPR/dCas9 activator complex. Mol Ther 2016;24:488-498.CrossRefPubMedPubMedCentral
49.
go back to reference Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 2014;9:e115987.CrossRefPubMedPubMedCentral Wang W, Ye C, Liu J, Zhang D, Kimata JT, Zhou P. CCR5 gene disruption via lentiviral vectors expressing Cas9 and single guided RNA renders cells resistant to HIV-1 infection. PLoS One 2014;9:e115987.CrossRefPubMedPubMedCentral
51.
go back to reference Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin II. CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 2015;4:e268.CrossRefPubMed Kang H, Minder P, Park MA, Mesquitta WT, Torbett BE, Slukvin II. CCR5 disruption in induced pluripotent stem cells using CRISPR/Cas9 provides selective resistance of immune cells to CCR5-tropic HIV-1 virus. Mol Ther Nucleic Acids 2015;4:e268.CrossRefPubMed
52.
go back to reference Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1971;1:1257-1260.CrossRefPubMed Padgett BL, Walker DL, ZuRhein GM, Eckroade RJ, Dessel BH. Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 1971;1:1257-1260.CrossRefPubMed
54.
go back to reference White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004;324:1-16.CrossRefPubMed White MK, Khalili K. Polyomaviruses and human cancer: molecular mechanisms underlying patterns of tumorigenesis. Virology 2004;324:1-16.CrossRefPubMed
55.
go back to reference White MK, Khalili K. Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene 2006;25:5286-5293.CrossRefPubMed White MK, Khalili K. Interaction of retinoblastoma protein family members with large T-antigen of primate polyomaviruses. Oncogene 2006;25:5286-5293.CrossRefPubMed
56.
go back to reference Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 2001;75:8803-8817.CrossRefPubMedPubMedCentral Reynolds AE, Ryckman BJ, Baines JD, Zhou Y, Liang L, Roller RJ. U(L)31 and U(L)34 proteins of herpes simplex virus type 1 form a complex that accumulates at the nuclear rim and is required for envelopment of nucleocapsids. J Virol 2001;75:8803-8817.CrossRefPubMedPubMedCentral
57.
go back to reference Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 2002;76:8939-8952.CrossRefPubMedPubMedCentral Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 2002;76:8939-8952.CrossRefPubMedPubMedCentral
58.
go back to reference Simpson-Holley M, Baines J, Roller R, Knipe DM. Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 2004;78:5591-5600.CrossRefPubMedPubMedCentral Simpson-Holley M, Baines J, Roller R, Knipe DM. Herpes simplex virus 1 U(L)31 and U(L)34 gene products promote the late maturation of viral replication compartments to the nuclear periphery. J Virol 2004;78:5591-5600.CrossRefPubMedPubMedCentral
59.
go back to reference Turner EM, Brown RS, Laudermilch E, Tsai PL, Schlieker C. The Torsin activator LULL1 Is required for efficient growth of Herpes Simplex Virus 1. J Virol 2015;89:8444-8452.CrossRefPubMedPubMedCentral Turner EM, Brown RS, Laudermilch E, Tsai PL, Schlieker C. The Torsin activator LULL1 Is required for efficient growth of Herpes Simplex Virus 1. J Virol 2015;89:8444-8452.CrossRefPubMedPubMedCentral
60.
61.
go back to reference Rose AE, Zhao C, Turner EM, Steyer AM, Schlieker C. Arresting a Torsin ATPase reshapes the endoplasmic reticulum. J Biol Chem 2014;289:552-564.CrossRefPubMed Rose AE, Zhao C, Turner EM, Steyer AM, Schlieker C. Arresting a Torsin ATPase reshapes the endoplasmic reticulum. J Biol Chem 2014;289:552-564.CrossRefPubMed
62.
go back to reference Kaplan JE, Osame M, Kubota H, et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 1990;3:1096-1101.PubMed Kaplan JE, Osame M, Kubota H, et al. The risk of development of HTLV-I-associated myelopathy/tropical spastic paraparesis among persons infected with HTLV-I. J Acquir Immune Defic Syndr 1990;3:1096-1101.PubMed
63.
go back to reference Tanaka A, Takeda S, Kariya R, et al. A novel therapeutic molecule against HTLV-1 infection targeting provirus. Leukemia 2013;27:1621-1627.CrossRefPubMed Tanaka A, Takeda S, Kariya R, et al. A novel therapeutic molecule against HTLV-1 infection targeting provirus. Leukemia 2013;27:1621-1627.CrossRefPubMed
64.
go back to reference Wang D, Mou H, Li S, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 2015;26:432-442.CrossRefPubMedPubMedCentral Wang D, Mou H, Li S, et al. Adenovirus-mediated somatic genome editing of Pten by CRISPR/Cas9 in mouse liver in spite of Cas9-specific immune responses. Hum Gene Ther 2015;26:432-442.CrossRefPubMedPubMedCentral
65.
go back to reference Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther 2016;24:447-457.PubMed Chen X, Gonçalves MA. Engineered viruses as genome editing devices. Mol Ther 2016;24:447-457.PubMed
66.
go back to reference Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015;26:443-451.CrossRefPubMed Gori JL, Hsu PD, Maeder ML, Shen S, Welstead GG, Bumcrot D. Delivery and specificity of CRISPR-Cas9 genome editing technologies for human gene therapy. Hum Gene Ther 2015;26:443-451.CrossRefPubMed
67.
go back to reference 67 Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther 2015;26:452-462. 67 Li L, He ZY, Wei XW, Gao GP, Wei YQ. Challenges in CRISPR/CAS9 Delivery: Potential Roles of Nonviral Vectors. Hum Gene Ther 2015;26:452-462.
68.
go back to reference Swiech L, Heidenreich M, Banerjee A, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015;33:102-106.CrossRefPubMed Swiech L, Heidenreich M, Banerjee A, et al. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9. Nat Biotechnol 2015;33:102-106.CrossRefPubMed
70.
72.
go back to reference Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012;48:179-188.CrossRefPubMed Lentz TB, Gray SJ, Samulski RJ. Viral vectors for gene delivery to the central nervous system. Neurobiol Dis 2012;48:179-188.CrossRefPubMed
Metadata
Title
Gene Editing for Treatment of Neurological Infections
Authors
Martyn K. White
Rafal Kaminski
Hassen Wollebo
Wenhui Hu
Thomas Malcolm
Kamel Khalili
Publication date
01-07-2016
Publisher
Springer US
Published in
Neurotherapeutics / Issue 3/2016
Print ISSN: 1933-7213
Electronic ISSN: 1878-7479
DOI
https://doi.org/10.1007/s13311-016-0439-1

Other articles of this Issue 3/2016

Neurotherapeutics 3/2016 Go to the issue