Skip to main content
Top
Published in: Molecular Brain 1/2014

Open Access 01-12-2014 | Methodology

Gene delivery in mouse auditory brainstem and hindbrain using in utero electroporation

Authors: Laurence S David, Jamila Aitoubah, Lee Stephen Lesperance, Lu-Yang Wang

Published in: Molecular Brain | Issue 1/2014

Login to get access

Abstract

Background

Manipulation of gene expression via recombinant viral vectors and creation of transgenic knock-out/in animals has revolutionized our understanding of genes that play critical roles during neuronal development and pathophysiology of neurological disorders. Recently, target-specific genetic manipulations are made possible to perform in combination with specific Cre-lines, albeit costly, labor-intensive and time consuming. Thus, alternative methods of gene manipulations to address important biological questions are highly desirable. In this study, we utilized in utero electroporation technique which involves efficient delivery of hindbrain-specific enhancer/promoter construct, Krox20 into the third ventricle of live mouse embryo to investigate green fluorescent protein (GFP) expression pattern in mouse auditory brainstem and other hindbrain neurons.

Results

We created a GFP/DNA construct containing a Krox20 B enhancer and β-globin promoter to drive GFP expression in the hindbrain via injection into the third ventricle of E12 to E13.5 mice. Electrical currents were applied directly to the embryonic hindbrain to allow DNA uptake into the cell. Confocal images were then acquired from fixed brain slices to analyze GFP expression in mouse whole brain at different postnatal stages (P6-P21). By using a cell-type specific enhancer as well as region specific injection and electroporation, robust GFP expression in the cerebellum and auditory brainstem but not in the forebrain was observed. GFP expression in calyx of Held terminals was more robust in <P15 compared to >P15 mice. In contrast, GFP expression in MNTB neurons was more prevalent in >P15 compared to <P15. In regards to the relative expression of GFP versus the synaptic marker Vglut1, percentage fluorescence GFP intensity in the calyx was higher in P11 to P15 than P6 to P10 and P16 to P21 groups.

Conclusions

Taken together, this technique would potentially allow hindbrain-specific genetic manipulations such as knock-down, knock-in and rescue experiments to unravel critical molecular substrates underpinning functional and morphological remodeling of synapses as well as understanding the pathophysiology of certain neurological disorders targeting not only the auditory brainstem but also other parts of hindbrain, most notably the cerebellum.
Appendix
Available only for authorised users
Literature
1.
go back to reference Kolk SM, de Mooij-Malsen AJ, Martens GJ: Spatiotemporal molecular approach of in utero electroporation to functionally decipher endophenotypes in neurodevelopmental disorders. Front Mol Neurosci. 2011, 4: 37-10.3389/fnmol.2011.00037.PubMedPubMedCentralCrossRef Kolk SM, de Mooij-Malsen AJ, Martens GJ: Spatiotemporal molecular approach of in utero electroporation to functionally decipher endophenotypes in neurodevelopmental disorders. Front Mol Neurosci. 2011, 4: 37-10.3389/fnmol.2011.00037.PubMedPubMedCentralCrossRef
2.
go back to reference Shimogori T, Ogawa M: Gene application with in utero electroporation in mouse embryonic brain. Develop Growth Differ. 2008, 50: 499-506. 10.1111/j.1440-169X.2008.01045.x.CrossRef Shimogori T, Ogawa M: Gene application with in utero electroporation in mouse embryonic brain. Develop Growth Differ. 2008, 50: 499-506. 10.1111/j.1440-169X.2008.01045.x.CrossRef
3.
go back to reference Dixit R, Lu F, Cantrup R, Gruenig N, Langevin LM, Kurrasch DM, Schuurmans C: Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp. 2011,:-doi:10.3791/2957 Dixit R, Lu F, Cantrup R, Gruenig N, Langevin LM, Kurrasch DM, Schuurmans C: Efficient gene delivery into multiple CNS territories using in utero electroporation. J Vis Exp. 2011,:-doi:10.3791/2957
4.
go back to reference Matsui A, Yoshida AC, Kubota M, Ogawa M, Shimogori T: Mousein uteroelectroporation: controlled spatiotemporal gene transfection.J Vis Exp 2011, doi:10.3791/3024., Matsui A, Yoshida AC, Kubota M, Ogawa M, Shimogori T: Mousein uteroelectroporation: controlled spatiotemporal gene transfection.J Vis Exp 2011, doi:10.3791/3024.,
5.
go back to reference Petros TJ, Rebsam A, Mason CA: In uteroand ex vivo electroporation for gene expression in mouse retinal ganglion cells.J Vis Exp 2009, doi:10.3791/1333., Petros TJ, Rebsam A, Mason CA: In uteroand ex vivo electroporation for gene expression in mouse retinal ganglion cells.J Vis Exp 2009, doi:10.3791/1333.,
6.
go back to reference Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M: Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci. 2012, 36: 2867-2876. 10.1111/j.1460-9568.2012.08203.x.PubMedCrossRef Nishiyama J, Hayashi Y, Nomura T, Miura E, Kakegawa W, Yuzaki M: Selective and regulated gene expression in murine Purkinje cells by in utero electroporation. Eur J Neurosci. 2012, 36: 2867-2876. 10.1111/j.1460-9568.2012.08203.x.PubMedCrossRef
7.
go back to reference Fraser S, Keynes R, Lumsden A: Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature. 1990, 344: 431-435. 10.1038/344431a0.PubMedCrossRef Fraser S, Keynes R, Lumsden A: Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature. 1990, 344: 431-435. 10.1038/344431a0.PubMedCrossRef
8.
go back to reference Giudicelli F, Taillebourg E, Charnay P, Gilardi-Hebenstreit P: Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Genes Dev. 2001, 15: 567-580. 10.1101/gad.189801.PubMedPubMedCentralCrossRef Giudicelli F, Taillebourg E, Charnay P, Gilardi-Hebenstreit P: Krox-20 patterns the hindbrain through both cell-autonomous and non cell-autonomous mechanisms. Genes Dev. 2001, 15: 567-580. 10.1101/gad.189801.PubMedPubMedCentralCrossRef
9.
go back to reference Lumsden A: The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 1990, 13: 329-335. 10.1016/0166-2236(90)90144-Y.PubMedCrossRef Lumsden A: The cellular basis of segmentation in the developing hindbrain. Trends Neurosci. 1990, 13: 329-335. 10.1016/0166-2236(90)90144-Y.PubMedCrossRef
10.
go back to reference Lumsden A, Krumlauf R: Patterning the vertebrate neuraxis. Science. 1996, 274: 1109-1115. 10.1126/science.274.5290.1109.PubMedCrossRef Lumsden A, Krumlauf R: Patterning the vertebrate neuraxis. Science. 1996, 274: 1109-1115. 10.1126/science.274.5290.1109.PubMedCrossRef
12.
go back to reference Oh AK: Genetics of vestibulopathy and migraine. Curr Opin Otolaryngol Head Neck Surg. 2013, 21: 469-472. 10.1097/MOO.0b013e32836464d5.PubMedCrossRef Oh AK: Genetics of vestibulopathy and migraine. Curr Opin Otolaryngol Head Neck Surg. 2013, 21: 469-472. 10.1097/MOO.0b013e32836464d5.PubMedCrossRef
13.
go back to reference Requena T, Espinosa-Sanchez JM, Lopez-Escamez JA: Genetics of dizziness: cerebellar and vestibular disorders. Curr Opin Neurol. 2014, 27: 98-104. 10.1097/WCO.0000000000000053.PubMedCrossRef Requena T, Espinosa-Sanchez JM, Lopez-Escamez JA: Genetics of dizziness: cerebellar and vestibular disorders. Curr Opin Neurol. 2014, 27: 98-104. 10.1097/WCO.0000000000000053.PubMedCrossRef
14.
go back to reference Voiculescu O, Charnay P, Schneider-Maunoury S: Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis. 2000, 26: 123-126. 10.1002/(SICI)1526-968X(200002)26:2<123::AID-GENE7>3.0.CO;2-O.PubMedCrossRef Voiculescu O, Charnay P, Schneider-Maunoury S: Expression pattern of a Krox-20/Cre knock-in allele in the developing hindbrain, bones, and peripheral nervous system. Genesis. 2000, 26: 123-126. 10.1002/(SICI)1526-968X(200002)26:2<123::AID-GENE7>3.0.CO;2-O.PubMedCrossRef
15.
go back to reference Irving C, Nieto MA, DasGupta R, Charnay P, Wilkinson DG: Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev Biol. 1996, 173: 26-38. 10.1006/dbio.1996.0004.PubMedCrossRef Irving C, Nieto MA, DasGupta R, Charnay P, Wilkinson DG: Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev Biol. 1996, 173: 26-38. 10.1006/dbio.1996.0004.PubMedCrossRef
16.
go back to reference Schneider-Maunoury S, Topilko P, Seitandou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P: Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell. 1993, 75: 1199-1214. 10.1016/0092-8674(93)90329-O.PubMedCrossRef Schneider-Maunoury S, Topilko P, Seitandou T, Levi G, Cohen-Tannoudji M, Pournin S, Babinet C, Charnay P: Disruption of Krox-20 results in alteration of rhombomeres 3 and 5 in the developing hindbrain. Cell. 1993, 75: 1199-1214. 10.1016/0092-8674(93)90329-O.PubMedCrossRef
17.
go back to reference Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P: Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature. 1989, 337: 461-464. 10.1038/337461a0.PubMedCrossRef Wilkinson DG, Bhatt S, Chavrier P, Bravo R, Charnay P: Segment-specific expression of a zinc-finger gene in the developing nervous system of the mouse. Nature. 1989, 337: 461-464. 10.1038/337461a0.PubMedCrossRef
18.
go back to reference De S, Shuler CF, Turman JE: The ontogeny of Krox-20 expression in brainstem and cerebellar neurons. J Chem Neuroanat. 2003, 25: 213-226. 10.1016/S0891-0618(03)00011-5.PubMedCrossRef De S, Shuler CF, Turman JE: The ontogeny of Krox-20 expression in brainstem and cerebellar neurons. J Chem Neuroanat. 2003, 25: 213-226. 10.1016/S0891-0618(03)00011-5.PubMedCrossRef
19.
go back to reference Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J: Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development. 2006, 133: 1253-1262. 10.1242/dev.02289.PubMedCrossRef Chomette D, Frain M, Cereghini S, Charnay P, Ghislain J: Krox20 hindbrain cis-regulatory landscape: interplay between multiple long-range initiation and autoregulatory elements. Development. 2006, 133: 1253-1262. 10.1242/dev.02289.PubMedCrossRef
20.
go back to reference Borst JG, Soria van Hoeve J: The calyx of held synapse: from model synapse to auditory relay. Annu Rev Physiol. 2012, 74: 199-224. 10.1146/annurev-physiol-020911-153236.PubMedCrossRef Borst JG, Soria van Hoeve J: The calyx of held synapse: from model synapse to auditory relay. Annu Rev Physiol. 2012, 74: 199-224. 10.1146/annurev-physiol-020911-153236.PubMedCrossRef
21.
go back to reference Wang LY, Fedchyshyn MJ, Yang YM: Action potential evoked transmitter release in central synapses: insights from the developing calyx of Held. Mol Brain. 2009, 2: 36-10.1186/1756-6606-2-36.PubMedPubMedCentralCrossRef Wang LY, Fedchyshyn MJ, Yang YM: Action potential evoked transmitter release in central synapses: insights from the developing calyx of Held. Mol Brain. 2009, 2: 36-10.1186/1756-6606-2-36.PubMedPubMedCentralCrossRef
22.
go back to reference Wimmer VC, Nevian T, Kuner T: Targeted in vivo expression of proteins in the calyx of Held. Pflugers Arch. 2004, 449: 319-333.PubMed Wimmer VC, Nevian T, Kuner T: Targeted in vivo expression of proteins in the calyx of Held. Pflugers Arch. 2004, 449: 319-333.PubMed
23.
go back to reference Young SM, Neher E: Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron. 2009, 63: 482-496. 10.1016/j.neuron.2009.07.028.PubMedCrossRef Young SM, Neher E: Synaptotagmin has an essential function in synaptic vesicle positioning for synchronous release in addition to its role as a calcium sensor. Neuron. 2009, 63: 482-496. 10.1016/j.neuron.2009.07.028.PubMedCrossRef
24.
go back to reference Han Y, Kaeser PS, Sudhof TC, Schneggenburger R: RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron. 2011, 69: 304-316. 10.1016/j.neuron.2010.12.014.PubMedPubMedCentralCrossRef Han Y, Kaeser PS, Sudhof TC, Schneggenburger R: RIM determines Ca2+ channel density and vesicle docking at the presynaptic active zone. Neuron. 2011, 69: 304-316. 10.1016/j.neuron.2010.12.014.PubMedPubMedCentralCrossRef
Metadata
Title
Gene delivery in mouse auditory brainstem and hindbrain using in utero electroporation
Authors
Laurence S David
Jamila Aitoubah
Lee Stephen Lesperance
Lu-Yang Wang
Publication date
01-12-2014
Publisher
BioMed Central
Published in
Molecular Brain / Issue 1/2014
Electronic ISSN: 1756-6606
DOI
https://doi.org/10.1186/s13041-014-0051-4

Other articles of this Issue 1/2014

Molecular Brain 1/2014 Go to the issue