Skip to main content
Top
Published in: Cancer Cell International 1/2021

Open Access 01-12-2021 | Gastric Cancer | Primary research

IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-Catenin pathway

Authors: Xinyu Li, Wen Chen, Chunkang Yang, Yisen Huang, Jing Jia, Rongyu Xu, Shen Guan, Ruijun Ma, Haitao Yang, Lifeng Xie

Published in: Cancer Cell International | Issue 1/2021

Login to get access

Abstract

Background

Despite current advances in gastric cancer treatment, disease metastasis and chemo-resistance remain as major hurdles against better overall prognosis. Previous studies indicated that IGHG1 as well as -Catenin serve as important regulators of tumor cellular malignancy. Therefore, understanding detailed molecular mechanism and identifying druggable target will be of great potentials in future therapeutic development.

Methods

Surgical tissues and gastric cancer cell lines were retrieved to evaluate IGHG1 expression for patients with or without lymph node/distal organ metastasis. Functional assays including CCK8 assay, Edu assay, sphere formation assay and transwell assay, wound healing assay, etc. were subsequently performed to evaluate the impact of IGHG1/-catenin axis on tumor cell proliferation, migration and chemo-resistance.

Results

Gastric cancer tissues and tumor cell lines demonstrated significantly higher level of IGHG1. Functional study further demonstrated that IGHG1 promoted proliferative and migration as well as chemo-resistance of gastric cancer tumor cells. Further experiments indicated that IGHG1 activated AKT/GSK-3/-Catenin axis, which played crucial role in regulation of proliferative and chemo-resistance of gastric cancer cells.

Conclusion

This study provided novel evidences that IGHG1 acted as oncogene by promotion of gastric cancer cellular proliferation, migration and chemo-resistance. Our research further suggested that IGHG1/AKT/GSK-3β/β-Catenin axis acted as novel pathway which regulated gastric cancer cellular malignant behavior. Our research might inspire future therapy development to promote overall prognosis of gastric cancer patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.CrossRef Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. CA Cancer J Clin. 2021;71(1):7–33.CrossRef
2.
go back to reference Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48.CrossRef Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet. 2020;396(10251):635–48.CrossRef
3.
go back to reference Gulli F, Basile U, Gragnani L, Napodano C, Pocino K, Miele L, Santini SA, Zignego AL, Gasbarrini A, Rapaccini GL. IgG cryoglobulinemia. Eur Rev Med Pharmacol Sci. 2018;22(18):6057–62.PubMed Gulli F, Basile U, Gragnani L, Napodano C, Pocino K, Miele L, Santini SA, Zignego AL, Gasbarrini A, Rapaccini GL. IgG cryoglobulinemia. Eur Rev Med Pharmacol Sci. 2018;22(18):6057–62.PubMed
4.
go back to reference Terry WD, Fahey JL. Subclasses of human gamma-2-globulin based on differences in the heavy polypeptide chains. Science. 1964;146(3642):400–1.CrossRef Terry WD, Fahey JL. Subclasses of human gamma-2-globulin based on differences in the heavy polypeptide chains. Science. 1964;146(3642):400–1.CrossRef
5.
go back to reference Qiu X, Zhu X, Zhang L, Mao Y, Zhang J, Hao P, Li G, Lv P, Li Z, Sun X, et al. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res. 2003;63(19):6488–95.PubMed Qiu X, Zhu X, Zhang L, Mao Y, Zhang J, Hao P, Li G, Lv P, Li Z, Sun X, et al. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res. 2003;63(19):6488–95.PubMed
6.
go back to reference Chen Z, Gu J. Immunoglobulin G expression in carcinomas and cancer cell lines. FASEB J: Off Publ Federation Am Soc Exp Biol. 2007;21(11):2931–8.CrossRef Chen Z, Gu J. Immunoglobulin G expression in carcinomas and cancer cell lines. FASEB J: Off Publ Federation Am Soc Exp Biol. 2007;21(11):2931–8.CrossRef
7.
go back to reference Chen Z, Huang X, Ye J, Pan P, Cao Q, Yang B, Li Z, Su M, Huang C, Gu J. Immunoglobulin G is present in a wide variety of soft tissue tumors and correlates well with proliferation markers and tumor grades. Cancer. 2010;116(8):1953–63.CrossRef Chen Z, Huang X, Ye J, Pan P, Cao Q, Yang B, Li Z, Su M, Huang C, Gu J. Immunoglobulin G is present in a wide variety of soft tissue tumors and correlates well with proliferation markers and tumor grades. Cancer. 2010;116(8):1953–63.CrossRef
8.
go back to reference Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10(1):101.CrossRef Pai SG, Carneiro BA, Mota JM, Costa R, Leite CA, Barroso-Sousa R, Kaplan JB, Chae YK, Giles FJ. Wnt/beta-catenin pathway: modulating anticancer immune response. J Hematol Oncol. 2017;10(1):101.CrossRef
9.
go back to reference Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treatment Rev. 2018;62:50–60.CrossRef Krishnamurthy N, Kurzrock R. Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treatment Rev. 2018;62:50–60.CrossRef
10.
go back to reference Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.CrossRef Behrens J, von Kries JP, Kühl M, Bruhn L, Wedlich D, Grosschedl R, Birchmeier W. Functional interaction of beta-catenin with the transcription factor LEF-1. Nature. 1996;382(6592):638–42.CrossRef
11.
go back to reference Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.CrossRef Rubinfeld B, Albert I, Porfiri E, Fiol C, Munemitsu S, Polakis P. Binding of GSK3beta to the APC-beta-catenin complex and regulation of complex assembly. Science. 1996;272(5264):1023–6.CrossRef
12.
go back to reference Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996;10(12):1443–54.CrossRef Yost C, Torres M, Miller JR, Huang E, Kimelman D, Moon RT. The axis-inducing activity, stability, and subcellular distribution of beta-catenin is regulated in Xenopus embryos by glycogen synthase kinase 3. Genes Dev. 1996;10(12):1443–54.CrossRef
13.
go back to reference Li X, Ni R, Chen J, Liu Z, Xiao M, Jiang F, Lu C. The presence of IGHG1 in human pancreatic carcinomas is associated with immune evasion mechanisms. Pancreas. 2011;40(5):753–61.CrossRef Li X, Ni R, Chen J, Liu Z, Xiao M, Jiang F, Lu C. The presence of IGHG1 in human pancreatic carcinomas is associated with immune evasion mechanisms. Pancreas. 2011;40(5):753–61.CrossRef
14.
go back to reference Qian J, Ji F, Ye X, Cheng H, Ma R, Chang X, Shou C, Cui H. IGHG1 promotes motility likely through epithelial-mesenchymal transition in ovarian cancer. Chinese J Cancer Res = Chung-kuo yen cheng yen chiu. 2018;30(2):282–90.CrossRef Qian J, Ji F, Ye X, Cheng H, Ma R, Chang X, Shou C, Cui H. IGHG1 promotes motility likely through epithelial-mesenchymal transition in ovarian cancer. Chinese J Cancer Res = Chung-kuo yen cheng yen chiu. 2018;30(2):282–90.CrossRef
15.
go back to reference Chu J, Li Y, Deng Z, Zhang Z, Xie Q, Zhang H, Zhong W, Pan B. IGHG1 regulates prostate cancer growth via the MEK/ERK/c-Myc pathway. Biomed Res Int. 2019;2019:7201562.CrossRef Chu J, Li Y, Deng Z, Zhang Z, Xie Q, Zhang H, Zhong W, Pan B. IGHG1 regulates prostate cancer growth via the MEK/ERK/c-Myc pathway. Biomed Res Int. 2019;2019:7201562.CrossRef
16.
go back to reference Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q, Zhang Z. IGHG1 induces EMT in gastric cancer cells by regulating TGF-beta/SMAD3 signaling pathway. J Cancer. 2021;12(12):3458–67.CrossRef Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q, Zhang Z. IGHG1 induces EMT in gastric cancer cells by regulating TGF-beta/SMAD3 signaling pathway. J Cancer. 2021;12(12):3458–67.CrossRef
17.
go back to reference Pan B, Zheng S, Liu C, Xu Y. Suppression of IGHG1 gene expression by siRNA leads to growth inhibition and apoptosis induction in human prostate cancer cell. Mol Biol Rep. 2013;40(1):27–33.CrossRef Pan B, Zheng S, Liu C, Xu Y. Suppression of IGHG1 gene expression by siRNA leads to growth inhibition and apoptosis induction in human prostate cancer cell. Mol Biol Rep. 2013;40(1):27–33.CrossRef
18.
go back to reference Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular signaling in tumorigenesis of gastric cancer. Iranian Biomed J. 2018;22(4):217–30.CrossRef Molaei F, Forghanifard MM, Fahim Y, Abbaszadegan MR. Molecular signaling in tumorigenesis of gastric cancer. Iranian Biomed J. 2018;22(4):217–30.CrossRef
19.
go back to reference Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10):e1000676.CrossRef Ooi CH, Ivanova T, Wu J, Lee M, Tan IB, Tao J, Ward L, Koo JH, Gopalakrishnan V, Zhu Y, et al. Oncogenic pathway combinations predict clinical prognosis in gastric cancer. PLoS Genet. 2009;5(10):e1000676.CrossRef
20.
go back to reference Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, Azuma T, Yamaoka Y, Yahiro K, Moss J, et al. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem. 2009;284(3):1612–9.CrossRef Nakayama M, Hisatsune J, Yamasaki E, Isomoto H, Kurazono H, Hatakeyama M, Azuma T, Yamaoka Y, Yahiro K, Moss J, et al. Helicobacter pylori VacA-induced inhibition of GSK3 through the PI3K/Akt signaling pathway. J Biol Chem. 2009;284(3):1612–9.CrossRef
21.
go back to reference Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26.CrossRef Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H, Aburatani H, Akiyama T, Peek RM Jr, Azuma T, et al. Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene. 2007;26(32):4617–26.CrossRef
22.
go back to reference Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA. Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia (New York NY). 2010;12(4):326–35.CrossRef Gandhirajan RK, Staib PA, Minke K, Gehrke I, Plickert G, Schlösser A, Schmitt EK, Hallek M, Kreuzer KA. Small molecule inhibitors of Wnt/beta-catenin/lef-1 signaling induces apoptosis in chronic lymphocytic leukemia cells in vitro and in vivo. Neoplasia (New York NY). 2010;12(4):326–35.CrossRef
23.
go back to reference Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, Hassell JA. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PloS One. 2012;7(3):e33976.CrossRef Hallett RM, Kondratyev MK, Giacomelli AO, Nixon AM, Girgis-Gabardo A, Ilieva D, Hassell JA. Small molecule antagonists of the Wnt/β-catenin signaling pathway target breast tumor-initiating cells in a Her2/Neu mouse model of breast cancer. PloS One. 2012;7(3):e33976.CrossRef
24.
go back to reference Arensman MD, Telesca D, Lay AR, Kershaw KM, Wu N, Donahue TR, Dawson DW. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther. 2014;13(10):2303–14.CrossRef Arensman MD, Telesca D, Lay AR, Kershaw KM, Wu N, Donahue TR, Dawson DW. The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther. 2014;13(10):2303–14.CrossRef
25.
go back to reference Vonbrüll M, Riegel E, Halter C, Aigner M, Bock H, Werner B, Lindhorst T, Czerny T. A dominant negative antisense approach targeting β-Catenin. Mol Biotechnol. 2018;60(5):339–49.CrossRef Vonbrüll M, Riegel E, Halter C, Aigner M, Bock H, Werner B, Lindhorst T, Czerny T. A dominant negative antisense approach targeting β-Catenin. Mol Biotechnol. 2018;60(5):339–49.CrossRef
Metadata
Title
IGHG1 upregulation promoted gastric cancer malignancy via AKT/GSK-3β/β-Catenin pathway
Authors
Xinyu Li
Wen Chen
Chunkang Yang
Yisen Huang
Jing Jia
Rongyu Xu
Shen Guan
Ruijun Ma
Haitao Yang
Lifeng Xie
Publication date
01-12-2021
Publisher
BioMed Central
Published in
Cancer Cell International / Issue 1/2021
Electronic ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-021-02098-1

Other articles of this Issue 1/2021

Cancer Cell International 1/2021 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine