Skip to main content
Top
Published in: Diagnostic Pathology 1/2019

Open Access 01-12-2019 | Gastric Cancer | Case Report

Gastric mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) with pancreatic acinar differentiation: a case report

Authors: Yasuko Fujita, Noriyuki Uesugi, Ryo Sugimoto, Makoto Eizuka, Takayuki Matsumoto, Tamotsu Sugai

Published in: Diagnostic Pathology | Issue 1/2019

Login to get access

Abstract

Background

Gastric mixed neuroendocrine-non-neuroendocrine neoplasms (MiNENs) are infrequently encountered in routine practice. Some gastric neuroendocrine carcinomas (NECs) have a variety of differentiation patterns; however, pancreatic acinar differentiation in gastric NECs is rare. The molecular abnormalities of NECs with pancreatic acinar differentiation are not well understood.

Case presentation

A 67-year-old male with a gastric MiNEN with pancreatic acinar differentiation without any symptoms. The tumor consisted of two components, including both glandular and solid histological features. Although the former component was a common type of adenocarcinoma, the latter showed endocrine differentiation and expressed pancreatic acinar enzymes immunohistochemically. A positive signal with the anti-BCL10 antibody, which detects one of the pancreatic acinar enzymes, was also present specifically in the latter component. We also examined TP53 genomic mutations, DNA methylation status, and allelic imbalance (AI), which is an indicator of tumor aggressiveness. Although both components of this tumor showed no genomic mutation and a low methylation epigenotype, the frequency of AI was higher in the acinar-endocrine component than in the adenocarcinomatous component. The finding of AI indicated the progression of the conventional adenocarcinoma to an acinar-endocrine component and identified the aggressive potential of the acinar-endocrine component.

Conclusions

We report a rare case of gastric MiNEN with pancreatic acinar differentiation. AI analysis revealed tumor progression and aggressiveness. In addition, the usefulness of the anti-BCL10 antibody for detecting the acinar-endocrine component was suggested.
Literature
1.
go back to reference Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumors of the digestive system. 4th ed. Lyon: World Health Organization; International Agency for Research on Cancer; 2010. Bosman FT, Carneiro F, Hruban RH, Theise ND, editors. WHO classification of tumors of the digestive system. 4th ed. Lyon: World Health Organization; International Agency for Research on Cancer; 2010.
2.
go back to reference de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, et al. Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology. 2017;105:412–25.CrossRef de Mestier L, Cros J, Neuzillet C, Hentic O, Egal A, Muller N, et al. Digestive system mixed neuroendocrine-non-neuroendocrine neoplasms. Neuroendocrinology. 2017;105:412–25.CrossRef
3.
go back to reference Iida S, Ban S, Kato K, Endo S, Matsuo R, Hirano K, et al. Gastric adenocarcinoma with dual differentiation toward neuroendocrine and α-fetoprotein-producing features: report of 2 cases. Case Rep Gastroenterol. 2017;11:652–60.CrossRef Iida S, Ban S, Kato K, Endo S, Matsuo R, Hirano K, et al. Gastric adenocarcinoma with dual differentiation toward neuroendocrine and α-fetoprotein-producing features: report of 2 cases. Case Rep Gastroenterol. 2017;11:652–60.CrossRef
4.
go back to reference Pericleous M, Toumpanakis C, Lumgair H, Caplin ME, Morgan-Rowe L, Clark I, et al. Gastric mixed adenoneuroendocrine carcinoma with a trilineage cell differentiation: case report and review of the literature. Case Rep Oncol. 2012;5:313–9.CrossRef Pericleous M, Toumpanakis C, Lumgair H, Caplin ME, Morgan-Rowe L, Clark I, et al. Gastric mixed adenoneuroendocrine carcinoma with a trilineage cell differentiation: case report and review of the literature. Case Rep Oncol. 2012;5:313–9.CrossRef
5.
go back to reference Fukunaga M. Gastric carcinoma resembling pancreatic mixed acinar-endocrine carcinoma. Hum Pathol. 2002;33:569–73.CrossRef Fukunaga M. Gastric carcinoma resembling pancreatic mixed acinar-endocrine carcinoma. Hum Pathol. 2002;33:569–73.CrossRef
6.
go back to reference Jain D, Eslami-Varzaneh F, Takano AM, Ayer U, Umashankar R, Muller R, et al. Composite glandular and endocrine tumors of the stomach with pancreatic acinar differentiation. Am J Surg Pathol. 2005;29:1524–9.CrossRef Jain D, Eslami-Varzaneh F, Takano AM, Ayer U, Umashankar R, Muller R, et al. Composite glandular and endocrine tumors of the stomach with pancreatic acinar differentiation. Am J Surg Pathol. 2005;29:1524–9.CrossRef
7.
go back to reference Sugai T, Sugimoto R, Habano W, Endoh M, Eizuka M, Tsuchida K, et al. Genetic differences stratified by PCR-based microsatellite analysis in gastric intramucosal neoplasia. Gastric Cancer. 2017;20:286–96.CrossRef Sugai T, Sugimoto R, Habano W, Endoh M, Eizuka M, Tsuchida K, et al. Genetic differences stratified by PCR-based microsatellite analysis in gastric intramucosal neoplasia. Gastric Cancer. 2017;20:286–96.CrossRef
8.
go back to reference Sugai T, Habano W, Jiao YF, Tsukahara M, Takeda Y, Otsuka K, et al. Analysis of molecular alterations in left- and right-sided colorectal carcinomas reveals distinct pathways of carcinogenesis: proposal for new molecular profile of colorectal carcinomas. J Mol Diagn. 2006;8:193–201.CrossRef Sugai T, Habano W, Jiao YF, Tsukahara M, Takeda Y, Otsuka K, et al. Analysis of molecular alterations in left- and right-sided colorectal carcinomas reveals distinct pathways of carcinogenesis: proposal for new molecular profile of colorectal carcinomas. J Mol Diagn. 2006;8:193–201.CrossRef
9.
go back to reference Yagi K, Takahashi H, Akagi K, Matsusaka K, Seto Y, Aburatani H, et al. Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma. Am J Pathol. 2012;180:616–25.CrossRef Yagi K, Takahashi H, Akagi K, Matsusaka K, Seto Y, Aburatani H, et al. Intermediate methylation epigenotype and its correlation to KRAS mutation in conventional colorectal adenoma. Am J Pathol. 2012;180:616–25.CrossRef
10.
go back to reference Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31:1770–86.CrossRef Rindi G, Klimstra DS, Abedi-Ardekani B, Asa SL, Bosman FT, Brambilla E, et al. A common classification framework for neuroendocrine neoplasms: an International Agency for Research on Cancer (IARC) and World Health Organization (WHO) expert consensus proposal. Mod Pathol. 2018;31:1770–86.CrossRef
11.
go back to reference Kubota T, Ohyama S, Hiki N, Nunobe S, Yamamoto N, Yamaguchi T. Endocrine carcinoma of the stomach: clinicopathological analysis of 27 surgically treated cases in a single institute. Gastric Cancer. 2012;15:323–30.CrossRef Kubota T, Ohyama S, Hiki N, Nunobe S, Yamamoto N, Yamaguchi T. Endocrine carcinoma of the stomach: clinicopathological analysis of 27 surgically treated cases in a single institute. Gastric Cancer. 2012;15:323–30.CrossRef
12.
go back to reference Lloyd RV, Osamura RY, Kȍlppel G, Rosai J, editors. WHO classification of tumors of the endocrine organs. 4th ed. Lyon: World Health Organization; International Agency for Research on Cancer; 2017. Lloyd RV, Osamura RY, Kȍlppel G, Rosai J, editors. WHO classification of tumors of the endocrine organs. 4th ed. Lyon: World Health Organization; International Agency for Research on Cancer; 2017.
13.
go back to reference Deng G, Lu Y, Zlotikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science. 1996;274:2057–9.CrossRef Deng G, Lu Y, Zlotikov G, Thor AD, Smith HS. Loss of heterozygosity in normal tissue adjacent to breast carcinomas. Science. 1996;274:2057–9.CrossRef
14.
go back to reference Arakawa N, Sugai T, Habano W, Eizuka M, Sugimoto R, Akasaka R, et al. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers. Mol Carcinog. 2017;56:527–37.CrossRef Arakawa N, Sugai T, Habano W, Eizuka M, Sugimoto R, Akasaka R, et al. Genome-wide analysis of DNA copy number alterations in early and advanced gastric cancers. Mol Carcinog. 2017;56:527–37.CrossRef
15.
go back to reference Jiao Y, Yonescu R, Offerhaus GJ, Klimstra DS, Maitra A, Eshleman JR, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–35.CrossRef Jiao Y, Yonescu R, Offerhaus GJ, Klimstra DS, Maitra A, Eshleman JR, et al. Whole-exome sequencing of pancreatic neoplasms with acinar differentiation. J Pathol. 2014;232:428–35.CrossRef
16.
go back to reference Bergmann F, Aulmann S, Sipos B, Kloor M, von Heydebreck A, Schweipert J, et al. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases. Virchows Arch. 2014;465:661–72.CrossRef Bergmann F, Aulmann S, Sipos B, Kloor M, von Heydebreck A, Schweipert J, et al. Acinar cell carcinomas of the pancreas: a molecular analysis in a series of 57 cases. Virchows Arch. 2014;465:661–72.CrossRef
17.
go back to reference Sugai T, Habano W, Endoh M, Konishi Y, Akasaka R, Toyota M, et al. Molecular analysis of gastric differentiated-type intramucosal and submucosal cancers. Int J Cancer. 2010;127:2500–9.CrossRef Sugai T, Habano W, Endoh M, Konishi Y, Akasaka R, Toyota M, et al. Molecular analysis of gastric differentiated-type intramucosal and submucosal cancers. Int J Cancer. 2010;127:2500–9.CrossRef
18.
go back to reference Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRef Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.CrossRef
19.
go back to reference Solcia E, Klersy C, Mastracci L, Alberizzi P, Candusso ME, Diegoli M, et al. A combined histologic and molecular approach identifies three groups of gastric cancer with different prognosis. Virchows Arch. 2009;455:197–211.CrossRef Solcia E, Klersy C, Mastracci L, Alberizzi P, Candusso ME, Diegoli M, et al. A combined histologic and molecular approach identifies three groups of gastric cancer with different prognosis. Virchows Arch. 2009;455:197–211.CrossRef
20.
go back to reference Girardi DM, Silva ACB, Rêgo JFM, Coudry RA, Riechelmann RP. Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: a systematic review. Cancer Treat Rev. 2017;56:28–35.CrossRef Girardi DM, Silva ACB, Rêgo JFM, Coudry RA, Riechelmann RP. Unraveling molecular pathways of poorly differentiated neuroendocrine carcinomas of the gastroenteropancreatic system: a systematic review. Cancer Treat Rev. 2017;56:28–35.CrossRef
21.
go back to reference La Rosa S, Franzi F, Marchet S, Finzi G, Clerici M, Vigetti D, et al. The monoclonal anti-BCL10 antibody (clone 331.1) is a sensitive and specific marker of pancreatic acinar cell carcinoma and pancreatic metaplasia. Virchows Arch. 2009;454:133–42.CrossRef La Rosa S, Franzi F, Marchet S, Finzi G, Clerici M, Vigetti D, et al. The monoclonal anti-BCL10 antibody (clone 331.1) is a sensitive and specific marker of pancreatic acinar cell carcinoma and pancreatic metaplasia. Virchows Arch. 2009;454:133–42.CrossRef
Metadata
Title
Gastric mixed neuroendocrine-non-neuroendocrine neoplasm (MiNEN) with pancreatic acinar differentiation: a case report
Authors
Yasuko Fujita
Noriyuki Uesugi
Ryo Sugimoto
Makoto Eizuka
Takayuki Matsumoto
Tamotsu Sugai
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Diagnostic Pathology / Issue 1/2019
Electronic ISSN: 1746-1596
DOI
https://doi.org/10.1186/s13000-019-0815-3

Other articles of this Issue 1/2019

Diagnostic Pathology 1/2019 Go to the issue