Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2019

Open Access 01-12-2019 | Gastric Cancer | Research

Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells

Authors: Ting Kang, Maolin Ge, Ruiheng Wang, Zhen Tan, Xiuli Zhang, Chuanying Zhu, Han Liu, Siyu Chen

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2019

Login to get access

Abstract

Background

Arsenic sulfide was found to have potential anti-cancer activities, especially in gastric cancer. However, the underlying mechanism need to be further explored. This study was aimed to investigate the mechanism of arsenic compounds on gastric cancer.

Methods

Gastric cancer cell lines were infected with lentiviral vector carrying shNFATc3 and/or treated with arsenic sulfide. MTT assay were performed to assess cell growth. Flow cytometer assays were used to detect cell cycle and reactive oxygen species (ROS) level of gastric cancer cells. Western blot was carried out to detect nuclear factor of activated T-cells, cytoplasmic 3 (NFATc3), cell cycle markers, DNA damage pathway protein expression as well as other protein expression in gastric cancer cell lines. The expression of recombination activating gene 1 (RAG1) in gastric cancer cell lines was determined by RNA-sequencing analyses and Real-Time qPCR. The effect of NFATc3 on RAG1 were determined by CHIP-qPCR assay. The effect of arsenic sulfide on AGS cells was evaluated in vivo.

Results

We show that arsenic sulfide as well as knockdown of NFATc3 resulted in increased double-strand DNA damage in gastric cancer cells by increasing the expression of RAG1, an endonuclease essential for immunoglobulin V(D) J recombination. Overexpression of NFATc3 blocked the expression of RAG1 expression and DNA damage induced by arsenic sulfide. Arsenic sulfide induced cellular oxidative stress to redistribute NFATc3, thereby inhibiting its transcriptional function, which can be reversed by N-acetyl-L-cysteine (NAC). We show that NFATc3 targets the promoter of RAG1 for transcriptional inhibition. We further showed that NFATc3 upregulation and RAG1 downregulation significantly associated with poor prognosis in patients with gastric cancer. Our in vivo experiments further confirmed that arsenic sulfide exerted cytotoxic activity against gastric cancer cells through inhibiting NFATc3 to activate RAG1 pathway.

Conclusion

These results demonstrate that arsenic sulfide targets NFATc3 to induce double strand DNA break (DSB) for cell killing through activating RAG1 expression. Our results link arsenic compound to the regulation of DNA damage control and RAG1 expression as a mechanism for its cytotoxic effect.
Appendix
Available only for authorised users
Literature
1.
go back to reference Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.CrossRef
2.
go back to reference Corso S, Giordano S. How can gastric cancer molecular profiling guide future therapies? Trends Mol Med. 2016;22(7):534–44.CrossRef Corso S, Giordano S. How can gastric cancer molecular profiling guide future therapies? Trends Mol Med. 2016;22(7):534–44.CrossRef
3.
go back to reference Wilke H, Muro K, Van Cutsem E, Oh S, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.CrossRef Wilke H, Muro K, Van Cutsem E, Oh S, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.CrossRef
4.
go back to reference Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science (New York, NY). 2010;328(5975):240–3.CrossRef Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, et al. Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science (New York, NY). 2010;328(5975):240–3.CrossRef
5.
go back to reference Zhu H, Hu J, Chen L, Zhou W, Li X, Wang L, et al. The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood. 2016;128(11):1525–8.CrossRef Zhu H, Hu J, Chen L, Zhou W, Li X, Wang L, et al. The 12-year follow-up of survival, chronic adverse effects, and retention of arsenic in patients with acute promyelocytic leukemia. Blood. 2016;128(11):1525–8.CrossRef
6.
go back to reference Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89(9):3345–53.PubMed Chen GQ, Shi XG, Tang W, Xiong SM, Zhu J, Cai X, et al. Use of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia (APL): I. As2O3 exerts dose-dependent dual effects on APL cells. Blood. 1997;89(9):3345–53.PubMed
7.
go back to reference Zhu HH, Huang XJ. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371(23):2239–41.CrossRef Zhu HH, Huang XJ. Oral arsenic and retinoic acid for non-high-risk acute promyelocytic leukemia. N Engl J Med. 2014;371(23):2239–41.CrossRef
8.
go back to reference Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell. 2018;34(5):823–39 e827.CrossRef Wang H, Tian L, Liu J, Goldstein A, Bado I, Zhang W, et al. The osteogenic niche is a calcium reservoir of bone micrometastases and confers unexpected therapeutic vulnerability. Cancer Cell. 2018;34(5):823–39 e827.CrossRef
9.
go back to reference Yoeli-Lerner M, Yiu G, Rabinovitz I, Erhardt P, Jauliac S, Toker A. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell. 2005;20(4):539–50.CrossRef Yoeli-Lerner M, Yiu G, Rabinovitz I, Erhardt P, Jauliac S, Toker A. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell. 2005;20(4):539–50.CrossRef
10.
go back to reference Pham L, Tamayo A, Yoshimura L, Lin-Lee Y, Ford R. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood. 2005;106(12):3940–7.CrossRef Pham L, Tamayo A, Yoshimura L, Lin-Lee Y, Ford R. Constitutive NF-kappaB and NFAT activation in aggressive B-cell lymphomas synergistically activates the CD154 gene and maintains lymphoma cell survival. Blood. 2005;106(12):3940–7.CrossRef
11.
go back to reference Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science (New York, NY). 1988;241(4862):202–5.CrossRef Shaw JP, Utz PJ, Durand DB, Toole JJ, Emmel EA, Crabtree GR. Identification of a putative regulator of early T cell activation genes. Science (New York, NY). 1988;241(4862):202–5.CrossRef
12.
go back to reference Serfling E, Barthelmäs R, Pfeuffer I, Schenk B, Zarius S, Swoboda R, et al. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes. EMBO J. 1989;8(2):465–73.CrossRef Serfling E, Barthelmäs R, Pfeuffer I, Schenk B, Zarius S, Swoboda R, et al. Ubiquitous and lymphocyte-specific factors are involved in the induction of the mouse interleukin 2 gene in T lymphocytes. EMBO J. 1989;8(2):465–73.CrossRef
13.
go back to reference Crabtree G, Schreiber S. SnapShot: Ca2+−calcineurin-NFAT signaling. Cell. 2009;138(1):210 210.e211.CrossRef Crabtree G, Schreiber S. SnapShot: Ca2+−calcineurin-NFAT signaling. Cell. 2009;138(1):210 210.e211.CrossRef
14.
go back to reference Vaeth M, Feske S. NFAT control of immune function: New Frontiers for an Abiding Trooper [version 1; referees: 2 approved], vol. 7; 2018. Vaeth M, Feske S. NFAT control of immune function: New Frontiers for an Abiding Trooper [version 1; referees: 2 approved], vol. 7; 2018.
15.
go back to reference Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med. 2013;13(4):543–54.CrossRef Pan MG, Xiong Y, Chen F. NFAT gene family in inflammation and cancer. Curr Mol Med. 2013;13(4):543–54.CrossRef
16.
go back to reference Flanagan W, Corthésy B, Bram R, Crabtree G. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991;352(6338):803–7.CrossRef Flanagan W, Corthésy B, Bram R, Crabtree G. Nuclear association of a T-cell transcription factor blocked by FK-506 and cyclosporin A. Nature. 1991;352(6338):803–7.CrossRef
17.
go back to reference Namgaladze D, Hofer H, Ullrich V. Redox control of calcineurin by targeting the binuclear Fe (2+)-Zn (2+) center at the enzyme active site. J Biol Chem. 2002;277(8):5962–9.CrossRef Namgaladze D, Hofer H, Ullrich V. Redox control of calcineurin by targeting the binuclear Fe (2+)-Zn (2+) center at the enzyme active site. J Biol Chem. 2002;277(8):5962–9.CrossRef
18.
go back to reference Peuker K, Muff S, Wang J, Künzel S, Bosse E, Zeissig Y, et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med. 2016;22(5):506–15.CrossRef Peuker K, Muff S, Wang J, Künzel S, Bosse E, Zeissig Y, et al. Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med. 2016;22(5):506–15.CrossRef
19.
go back to reference Zhang X, Kang T, Zhang L, Tong Y, Ding W, Chen S. NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget. 2017;8(32):52735–45.PubMedPubMedCentral Zhang X, Kang T, Zhang L, Tong Y, Ding W, Chen S. NFATc3 mediates the sensitivity of gastric cancer cells to arsenic sulfide. Oncotarget. 2017;8(32):52735–45.PubMedPubMedCentral
20.
go back to reference Zhang L, Tian W, Kim S, Ding W, Tong Y, Chen S. Arsenic sulfide, the main component of realgar, a traditional Chinese medicine, induces apoptosis of gastric cancer cells in vitro and in vivo. Drug Des Devel Ther. 2015;9:79–92.PubMed Zhang L, Tian W, Kim S, Ding W, Tong Y, Chen S. Arsenic sulfide, the main component of realgar, a traditional Chinese medicine, induces apoptosis of gastric cancer cells in vitro and in vivo. Drug Des Devel Ther. 2015;9:79–92.PubMed
21.
go back to reference Mojsa B, Mora S, Bossowski JP, Lassot I, Desagher S. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Cell Death Differ. 2015;22(2):274–86.CrossRef Mojsa B, Mora S, Bossowski JP, Lassot I, Desagher S. Control of neuronal apoptosis by reciprocal regulation of NFATc3 and Trim17. Cell Death Differ. 2015;22(2):274–86.CrossRef
22.
go back to reference Durocher D, Jackson S. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol. 2001;13(2):225–31.CrossRef Durocher D, Jackson S. DNA-PK, ATM and ATR as sensors of DNA damage: variations on a theme? Curr Opin Cell Biol. 2001;13(2):225–31.CrossRef
23.
go back to reference Huang X, Traganos F, Darzynkiewicz Z. DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle. 2003;2(6):614–9.CrossRef Huang X, Traganos F, Darzynkiewicz Z. DNA damage induced by DNA topoisomerase I- and topoisomerase II-inhibitors detected by histone H2AX phosphorylation in relation to the cell cycle phase and apoptosis. Cell Cycle. 2003;2(6):614–9.CrossRef
24.
go back to reference Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci. 2012;49(5–6):199–217.CrossRef Darzynkiewicz Z, Zhao H, Halicka HD, Rybak P, Dobrucki J, Wlodkowic D. DNA damage signaling assessed in individual cells in relation to the cell cycle phase and induction of apoptosis. Crit Rev Clin Lab Sci. 2012;49(5–6):199–217.CrossRef
25.
go back to reference Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18(1):88–98.CrossRef Jeanne M, Lallemand-Breitenbach V, Ferhi O, Koken M, Le Bras M, Duffort S, et al. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 2010;18(1):88–98.CrossRef
26.
go back to reference Patra AK, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, et al. PKB rescues calcineurin/NFAT-induced arrest of rag expression and pre-T cell differentiation. J Immunol. 2006;177(7):4567.CrossRef Patra AK, Drewes T, Engelmann S, Chuvpilo S, Kishi H, Hünig T, et al. PKB rescues calcineurin/NFAT-induced arrest of rag expression and pre-T cell differentiation. J Immunol. 2006;177(7):4567.CrossRef
27.
go back to reference Soerjomataram I, Lortet-Tieulent J, Parkin D, Ferlay J, Mathers C, Forman D, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 2012;380(9856):1840–50.CrossRef Soerjomataram I, Lortet-Tieulent J, Parkin D, Ferlay J, Mathers C, Forman D, et al. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet. 2012;380(9856):1840–50.CrossRef
28.
go back to reference Ding W, Tong Y, Zhang X, Pan M, Chen S. Study of arsenic sulfide in solid tumor cells reveals regulation of nuclear factors of activated T-cells by PML and p53. Sci Rep. 2016;6:19793.CrossRef Ding W, Tong Y, Zhang X, Pan M, Chen S. Study of arsenic sulfide in solid tumor cells reveals regulation of nuclear factors of activated T-cells by PML and p53. Sci Rep. 2016;6:19793.CrossRef
29.
go back to reference Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64.CrossRef Van Cutsem E, Sagaert X, Topal B, Haustermans K, Prenen H. Gastric cancer. Lancet. 2016;388(10060):2654–64.CrossRef
30.
go back to reference Lyman G, Moses H. Biomarker tests for molecularly targeted therapies: laying the foundation and fulfilling the dream. J Clin Oncol. 2016;34(17):2061–6.CrossRef Lyman G, Moses H. Biomarker tests for molecularly targeted therapies: laying the foundation and fulfilling the dream. J Clin Oncol. 2016;34(17):2061–6.CrossRef
31.
go back to reference Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz D. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell. 2010;141(3):419–31.CrossRef Ji Y, Resch W, Corbett E, Yamane A, Casellas R, Schatz D. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell. 2010;141(3):419–31.CrossRef
32.
go back to reference Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, et al. RAG represents a widespread threat to the lymphocyte genome. Cell. 2015;162(4):751–65.CrossRef Teng G, Maman Y, Resch W, Kim M, Yamane A, Qian J, et al. RAG represents a widespread threat to the lymphocyte genome. Cell. 2015;162(4):751–65.CrossRef
33.
go back to reference Schatz DG, Swanson PC. V(D) J recombination: mechanisms of initiation. Annu Rev Genet. 2011;45(1):167–202.CrossRef Schatz DG, Swanson PC. V(D) J recombination: mechanisms of initiation. Annu Rev Genet. 2011;45(1):167–202.CrossRef
34.
go back to reference Zhao S, Gwyn L, De P, Rodgers K. A non-sequence-specific DNA binding mode of RAG1 is inhibited by RAG2. J Mol Biol. 2009;387(3):744–58.CrossRef Zhao S, Gwyn L, De P, Rodgers K. A non-sequence-specific DNA binding mode of RAG1 is inhibited by RAG2. J Mol Biol. 2009;387(3):744–58.CrossRef
Metadata
Title
Arsenic sulfide induces RAG1-dependent DNA damage for cell killing by inhibiting NFATc3 in gastric cancer cells
Authors
Ting Kang
Maolin Ge
Ruiheng Wang
Zhen Tan
Xiuli Zhang
Chuanying Zhu
Han Liu
Siyu Chen
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2019
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-019-1471-x

Other articles of this Issue 1/2019

Journal of Experimental & Clinical Cancer Research 1/2019 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine