Skip to main content
Top
Published in: Obesity Surgery 4/2014

01-04-2014 | Original Contributions

Gastric Bypass Surgery May Improve Beta Cell Apoptosis with Ghrelin Overexpression in Patients with BMI ≥ 32.5 kg/m2

Authors: Jian Yang, Xiao Feng, Shuzhe Zhong, Yong Wang, Jingang Liu

Published in: Obesity Surgery | Issue 4/2014

Login to get access

Abstract

Background

Roux-en-Y gastric bypass (RYGB) surgery can lead to long-term remission of type 2 diabetes mellitus, depending on changes in weight and circulating levels of gut hormones. The general objectives of this study were to evaluate changes in plasma levels of the ghrelin gene products following RYGB surgery and to determine the role of ghrelin in inhibiting apoptosis of INS-1 cells induced by hyperglycemia.

Methods

Sixteen obese Chinese patients with type 2 diabetes mellitus who underwent gastric bypass surgery were assessed in this investigation. Blood plasma levels of acylated ghrelin (AG), unacylated ghrelin (UAG), and obestatin (OB) were measured both before and 12 months after RYGB surgery. To determine the effect of ghrelin on inhibition of apoptosis, INS-1 cells were cultured in a high glucose concentration and treated with AG, UAG, or OB. Cell viability was assessed using the MTT assay, and apoptosis was evaluated by flow cytometry with Annexin-V FITC/PI double staining and transmission electron microscopy. Intracellular calcium trafficking was assessed using flow cytometry and confocal microscopy. All the data was processed using the SPSS statistical package and expressed as means ± SD, with p < 0.05 considered statistically significant.

Results

Fasting and postprandial plasma levels of AG, UAG, and OB were significantly elevated 1 year after RYGB surgery. Mean fasting plasma AG, UAG, and OB increased from preoperative levels of 37.0, 462, and 69.4 pg/mL, respectively, to 61.4, 804, and 112 pg/mL (with p < 0.05) 1 year after surgery. Mean 120-min postprandial plasma AG, UAG, and OB increased from preoperative levels of 23.8, 287, and 53.8 pg/mL, respectively, to 39.7, 516, and 69.0 pg/mL (with p < 0.05) postoperatively. After a 1-week culture of INS-1 beta cell in high glucose, peptide treatment showed increased cell survival by 69 % (AG), 60 % (UAG), and 73 % (OB) and decreased apoptosis by 49 % (AG), 37 % (UAG), and 38 % (OB) compared to cells cultured in high glucose without peptides, respectively (with p < 0.05). Treatment with AG, UAG, and OB inhibited intracellular calcium mobilization and intramitochondrial calcium accumulation in INS-1 cells to protect the cells from hyperglycemia-induced apoptosis.

Conclusions

The remission of diabetes following RYGB surgery seems to be associated with increased plasma levels of AG, UAG, and OB. Moreover, the ghrelin gene products probably protect β cells by maintaining calcium homeostasis. Additional mechanisms, currently unclear, are likely to be involved as well.
Literature
2.
go back to reference Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362:1090–101.PubMedCrossRef Yang W, Lu J, Weng J, et al. Prevalence of diabetes among men and women in China. N Engl J Med. 2010;362:1090–101.PubMedCrossRef
3.
go back to reference Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248.e5–56.e5.CrossRef Buchwald H, Estok R, Fahrbach K, et al. Weight and type 2 diabetes after bariatric surgery: systematic review and meta-analysis. Am J Med. 2009;122(3):248.e5–56.e5.CrossRef
4.
go back to reference Buchwald H, Avidor Y, Braunwald E, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRef Buchwald H, Avidor Y, Braunwald E, Fahrbach K, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.PubMedCrossRef
5.
go back to reference Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. J Diabetes Care. 2008;31(2):$290–96.CrossRef Rubino F. Is type 2 diabetes an operable intestinal disease? A provocative yet reasonable hypothesis. J Diabetes Care. 2008;31(2):$290–96.CrossRef
6.
7.
go back to reference Shak JR, Roper J, Perez-Perez GI, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. 2008;18:1089–96.PubMedCentralPubMedCrossRef Shak JR, Roper J, Perez-Perez GI, et al. The effect of laparoscopic gastric banding surgery on plasma levels of appetite-control, insulinotropic, and digestive hormones. Obes Surg. 2008;18:1089–96.PubMedCentralPubMedCrossRef
8.
go back to reference Martins C, Kjelstrup L, Ingrid L, et al. Impact of sustained weight loss achieved through Roux-en-Y gastric bypass or a lifestyle intervention on ghrelin, obestatin, and ghrelin/obestatin ratio in morbidly obese patients. Obes Surg. 2011;21(6):751–8.PubMedCrossRef Martins C, Kjelstrup L, Ingrid L, et al. Impact of sustained weight loss achieved through Roux-en-Y gastric bypass or a lifestyle intervention on ghrelin, obestatin, and ghrelin/obestatin ratio in morbidly obese patients. Obes Surg. 2011;21(6):751–8.PubMedCrossRef
9.
go back to reference Holdstock C, Engstrӧm BE, Ohrvall M, et al. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.PubMedCrossRef Holdstock C, Engstrӧm BE, Ohrvall M, et al. Ghrelin and adipose tissue regulatory peptides: effect of gastric bypass surgery in obese humans. J Clin Endocrinol Metab. 2003;88:3177–83.PubMedCrossRef
10.
go back to reference Faraj M, Havel PJ, Phélis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.PubMedCrossRef Faraj M, Havel PJ, Phélis S, et al. Plasma acylation-stimulating protein, adiponectin, leptin, and ghrelin before and after weight loss induced by gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2003;88:1594–602.PubMedCrossRef
11.
go back to reference Fruhbeck G, Rotellar F, Hernández-Lizoain JL, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg. 2004;14:1208–15.PubMedCrossRef Fruhbeck G, Rotellar F, Hernández-Lizoain JL, et al. Fasting plasma ghrelin concentrations 6 months after gastric bypass are not determined by weight loss or changes in insulinemia. Obes Surg. 2004;14:1208–15.PubMedCrossRef
12.
go back to reference Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.PubMedCrossRef Cummings DE, Weigle DS, Frayo RS, et al. Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N Engl J Med. 2002;346(21):1623–30.PubMedCrossRef
13.
go back to reference Morinigo R, Casamitjana R, Moize V, et al. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res. 2004;12:1108–16.PubMedCrossRef Morinigo R, Casamitjana R, Moize V, et al. Short-term effects of gastric bypass surgery on circulating ghrelin levels. Obes Res. 2004;12:1108–16.PubMedCrossRef
14.
go back to reference Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRef Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.PubMedCrossRef
15.
go back to reference Abizaid A, Horvath TL. Ghrelin and the central regulation of feeding and energy balance. Indian J Endocrinol Metab. 2012;16 Suppl 3:S617–26.PubMedCentralPubMed Abizaid A, Horvath TL. Ghrelin and the central regulation of feeding and energy balance. Indian J Endocrinol Metab. 2012;16 Suppl 3:S617–26.PubMedCentralPubMed
16.
go back to reference González-Jiménez E, Schmidt Río-Valle J. Regulation of dietary intake and energy balance: factors and mechanisms involved. Nutr Hosp. 2012;27(6):1850–9.PubMed González-Jiménez E, Schmidt Río-Valle J. Regulation of dietary intake and energy balance: factors and mechanisms involved. Nutr Hosp. 2012;27(6):1850–9.PubMed
17.
go back to reference Damjanovic SS, Lalic NM, Pesko PM, et al. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J Clin Endocrinol Metab. 2006;91(7):2574–81.PubMedCrossRef Damjanovic SS, Lalic NM, Pesko PM, et al. Acute effects of ghrelin on insulin secretion and glucose disposal rate in gastrectomized patients. J Clin Endocrinol Metab. 2006;91(7):2574–81.PubMedCrossRef
18.
go back to reference Kim SW, Kim KW, Shin CS, et al. Acylated ghrelin secretion is acutely suppressed by oral glucose load or insulin-induced hypoglycemia independently of basal growth hormone secretion in humans. Horm Res. 2007;67(5):211–9.PubMedCrossRef Kim SW, Kim KW, Shin CS, et al. Acylated ghrelin secretion is acutely suppressed by oral glucose load or insulin-induced hypoglycemia independently of basal growth hormone secretion in humans. Horm Res. 2007;67(5):211–9.PubMedCrossRef
19.
go back to reference Kishimoto I, Tokudome T, Hosoda H, et al. Ghrelin and cardiovascular diseases. J Cardiol. 2012;59(1):8–13.PubMedCrossRef Kishimoto I, Tokudome T, Hosoda H, et al. Ghrelin and cardiovascular diseases. J Cardiol. 2012;59(1):8–13.PubMedCrossRef
20.
go back to reference Korbonits M, Goldstone AP, Gueorguiev M, et al. Ghrelin—a hormone with multiple functions. Front Neuroendocrinol. 2004;25(1):27–68.PubMedCrossRef Korbonits M, Goldstone AP, Gueorguiev M, et al. Ghrelin—a hormone with multiple functions. Front Neuroendocrinol. 2004;25(1):27–68.PubMedCrossRef
21.
go back to reference Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides. 2008;29(7):1255–70.PubMedCrossRef Soares JB, Leite-Moreira AF. Ghrelin, des-acyl ghrelin and obestatin: three pieces of the same puzzle. Peptides. 2008;29(7):1255–70.PubMedCrossRef
22.
go back to reference Granata R, Baragli A, Settanni F, et al. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J Mol Endocrinol. 2010;45(3):107–18.PubMedCrossRef Granata R, Baragli A, Settanni F, et al. Unraveling the role of the ghrelin gene peptides in the endocrine pancreas. J Mol Endocrinol. 2010;45(3):107–18.PubMedCrossRef
23.
go back to reference Granata R, Isgaard J, Alloatti G, et al. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Exp Biol Med (Maywood). 2011;236(5):505–14.CrossRef Granata R, Isgaard J, Alloatti G, et al. Cardiovascular actions of the ghrelin gene-derived peptides and growth hormone-releasing hormone. Exp Biol Med (Maywood). 2011;236(5):505–14.CrossRef
24.
go back to reference Holst B, Egerod KJ, et al. G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology. 2009;150(6):2577–85.PubMedCentralPubMedCrossRef Holst B, Egerod KJ, et al. G protein-coupled receptor 39 deficiency is associated with pancreatic islet dysfunction. Endocrinology. 2009;150(6):2577–85.PubMedCentralPubMedCrossRef
25.
go back to reference Fujimiya M, Asakawa A, Ataka K, et al. Ghrelin, des-acyl ghrelin, and obestatin: regulatory roles on the gastrointestinal motility. Int J Pept. 2010;2010:305192.PubMedCentralPubMed Fujimiya M, Asakawa A, Ataka K, et al. Ghrelin, des-acyl ghrelin, and obestatin: regulatory roles on the gastrointestinal motility. Int J Pept. 2010;2010:305192.PubMedCentralPubMed
26.
go back to reference Chanclón B, Luque RM, Córdoba-Chacón J, et al. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions. PLoS One. 2013;8(2):e57834.PubMedCentralPubMedCrossRef Chanclón B, Luque RM, Córdoba-Chacón J, et al. Role of endogenous cortistatin in the regulation of ghrelin system expression at pancreatic level under normal and obese conditions. PLoS One. 2013;8(2):e57834.PubMedCentralPubMedCrossRef
27.
go back to reference Salehi A, Dornonville de la Cour C, Håkanson R, et al. Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul Pept. 2004;118(3):143–50.PubMedCrossRef Salehi A, Dornonville de la Cour C, Håkanson R, et al. Effects of ghrelin on insulin and glucagon secretion: a study of isolated pancreatic islets and intact mice. Regul Pept. 2004;118(3):143–50.PubMedCrossRef
28.
go back to reference Peng Z, Xiaolei Z, Al-Sanaban H, et al. Ghrelin inhibits insulin release by regulating the expression of inwardly rectifying potassium channel 6.2 in islets. Am J Med Sci. 2012;343(3):215–9.PubMedCrossRef Peng Z, Xiaolei Z, Al-Sanaban H, et al. Ghrelin inhibits insulin release by regulating the expression of inwardly rectifying potassium channel 6.2 in islets. Am J Med Sci. 2012;343(3):215–9.PubMedCrossRef
29.
go back to reference Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33 Suppl 1:S33–40.CrossRef Cummings DE. Endocrine mechanisms mediating remission of diabetes after gastric bypass surgery. Int J Obes (Lond). 2009;33 Suppl 1:S33–40.CrossRef
30.
go back to reference Merglen A, Theander S, Rubi B, et al. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–78.PubMedCrossRef Merglen A, Theander S, Rubi B, et al. Glucose sensitivity and metabolism-secretion coupling studied during two-year continuous culture in INS-1E insulinoma cells. Endocrinology. 2004;145:667–78.PubMedCrossRef
31.
go back to reference Asfari M, Janjic D, Meda P, et al. Establishment of 2-mercaptoethanol dependent differentiated insulin-secreting cell lines. Endocrinology. 1992;130:167–78.PubMed Asfari M, Janjic D, Meda P, et al. Establishment of 2-mercaptoethanol dependent differentiated insulin-secreting cell lines. Endocrinology. 1992;130:167–78.PubMed
33.
go back to reference Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.PubMedCentralPubMedCrossRef Pournaras DJ, Glicksman C, Vincent RP, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153(8):3613–9.PubMedCentralPubMedCrossRef
34.
go back to reference Hideharu S, Poochong T, Schauer PR, et al. Review of metabolic surgery for type 2 diabetes in patients with a BMI < 35 kg/m2. J Obes. 2012;2012:147256. Hideharu S, Poochong T, Schauer PR, et al. Review of metabolic surgery for type 2 diabetes in patients with a BMI < 35 kg/m2. J Obes. 2012;2012:147256.
35.
go back to reference Schernthaner G, Brix JM, Kopp HP, et al. Cure of type 2 diabetes by metabolic surgery? A critical analysis of the evidence in 2010. Diabetes Care. 2011;34 Suppl 2:S355–60.PubMedCentralPubMedCrossRef Schernthaner G, Brix JM, Kopp HP, et al. Cure of type 2 diabetes by metabolic surgery? A critical analysis of the evidence in 2010. Diabetes Care. 2011;34 Suppl 2:S355–60.PubMedCentralPubMedCrossRef
36.
go back to reference Oliván B, Teixeira J, Bose M, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249(6):948–53.PubMedCentralPubMedCrossRef Oliván B, Teixeira J, Bose M, et al. Effect of weight loss by diet or gastric bypass surgery on peptide YY3-36 levels. Ann Surg. 2009;249(6):948–53.PubMedCentralPubMedCrossRef
37.
go back to reference Kelishadi R, Hashemipour M, Mohammadifard N, et al. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol. 2008;69(5):721–9.CrossRef Kelishadi R, Hashemipour M, Mohammadifard N, et al. Short- and long-term relationships of serum ghrelin with changes in body composition and the metabolic syndrome in prepubescent obese children following two different weight loss programmes. Clin Endocrinol. 2008;69(5):721–9.CrossRef
38.
go back to reference Fruhbeck G, Diez-Caballero A, Gil M, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg. 2004;14:606–12.PubMedCrossRef Fruhbeck G, Diez-Caballero A, Gil M, et al. The decrease in plasma ghrelin concentrations following bariatric surgery depends on the functional integrity of the fundus. Obes Surg. 2004;14:606–12.PubMedCrossRef
39.
go back to reference Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.PubMedCrossRef Ariyasu H, Takaya K, Tagami T, et al. Stomach is a major source of circulating ghrelin, and feeding determines plasma ghrelin-like immunoreactivity levels in humans. J Clin Endocrinol Metab. 2001;86:4753–8.PubMedCrossRef
41.
go back to reference Akamizu T, Kangawa K. The physiological significance and potential clinical applications of ghrelin. Eur J Intern Med. 2012;23:197–202.PubMedCrossRef Akamizu T, Kangawa K. The physiological significance and potential clinical applications of ghrelin. Eur J Intern Med. 2012;23:197–202.PubMedCrossRef
43.
go back to reference Patriti A, Facchiano E, Gullà N, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2007;245(1):157–8.PubMedCentralPubMedCrossRef Patriti A, Facchiano E, Gullà N, et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2007;245(1):157–8.PubMedCentralPubMedCrossRef
44.
go back to reference Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5.PubMedCrossRef Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93(2):210–5.PubMedCrossRef
46.
go back to reference Wiedmer P, Nogueiras R, Broglio F, et al. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(10):705–12. Review.PubMedCrossRef Wiedmer P, Nogueiras R, Broglio F, et al. Ghrelin, obesity and diabetes. Nat Clin Pract Endocrinol Metab. 2007;3(10):705–12. Review.PubMedCrossRef
47.
go back to reference Favaro E, Granata R, Miceli I, et al. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia. 2012;55(4):1058–70.PubMedCentralPubMedCrossRef Favaro E, Granata R, Miceli I, et al. The ghrelin gene products and exendin-4 promote survival of human pancreatic islet endothelial cells in hyperglycaemic conditions, through phosphoinositide 3-kinase/Akt, extracellular signal-related kinase (ERK)1/2 and cAMP/protein kinase A (PKA) signalling pathways. Diabetologia. 2012;55(4):1058–70.PubMedCentralPubMedCrossRef
48.
go back to reference Wang W, Zhang D, Zhao H, et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. Regul Pept. 2010;161(1–3):43–50.PubMedCrossRef Wang W, Zhang D, Zhao H, et al. Ghrelin inhibits cell apoptosis induced by lipotoxicity in pancreatic beta-cell line. Regul Pept. 2010;161(1–3):43–50.PubMedCrossRef
49.
go back to reference Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes. 2002;51:1938–48.PubMedCrossRef Cai L, Li W, Wang G, et al. Hyperglycemia-induced apoptosis in mouse myocardium: mitochondrial cytochrome c-mediated caspase-3 activation pathway. Diabetes. 2002;51:1938–48.PubMedCrossRef
50.
go back to reference Wold LE, Ceylan-Isik AF, Fang CX, et al. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med. 2006;40:1419–29.PubMedCrossRef Wold LE, Ceylan-Isik AF, Fang CX, et al. Metallothionein alleviates cardiac dysfunction in streptozotocin-induced diabetes: role of Ca2+ cycling proteins, NADPH oxidase, poly(ADP-Ribose) polymerase and myosin heavy chain isozyme. Free Radic Biol Med. 2006;40:1419–29.PubMedCrossRef
51.
go back to reference Li J, Wang P, Yu S, et al. Calcium entry mediates hyperglycemia-induced apoptosis through Ca2+/calmodulin-dependent kinase II in retinal capillary endothelial cells. Mol Vis. 2012;18:2371–9.PubMedCentralPubMed Li J, Wang P, Yu S, et al. Calcium entry mediates hyperglycemia-induced apoptosis through Ca2+/calmodulin-dependent kinase II in retinal capillary endothelial cells. Mol Vis. 2012;18:2371–9.PubMedCentralPubMed
52.
go back to reference Müller I, Lipp P, Thiel G. Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium. 2012;52(2):137–51.PubMedCrossRef Müller I, Lipp P, Thiel G. Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium. 2012;52(2):137–51.PubMedCrossRef
53.
go back to reference Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol. 2013;304(6):C508–18.PubMedCrossRef Younce CW, Burmeister MA, Ayala JE. Exendin-4 attenuates high glucose-induced cardiomyocyte apoptosis via inhibition of endoplasmic reticulum stress and activation of SERCA2a. Am J Physiol Cell Physiol. 2013;304(6):C508–18.PubMedCrossRef
54.
go back to reference Herchuelz A, Nguidjoe E, Jiang L, et al. β-Cell preservation and regeneration in diabetes by modulation of β-cell Ca2+ homeostasis. Diabetes Obes Metab. 2012;14(3):136–42.PubMedCrossRef Herchuelz A, Nguidjoe E, Jiang L, et al. β-Cell preservation and regeneration in diabetes by modulation of β-cell Ca2+ homeostasis. Diabetes Obes Metab. 2012;14(3):136–42.PubMedCrossRef
57.
go back to reference Rudijanto A. Calcium channel blocker (diltiazem) inhibits apoptosis of vascular smooth muscle cell exposed to high glucose concentration through lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) pathway. Acta Med Indones. 2010;42(2):59–65.PubMed Rudijanto A. Calcium channel blocker (diltiazem) inhibits apoptosis of vascular smooth muscle cell exposed to high glucose concentration through lectin-like oxidized low density lipoprotein receptor-1 (LOX-1) pathway. Acta Med Indones. 2010;42(2):59–65.PubMed
58.
go back to reference Wang Y, Gao L, Li Y, Sun Z, et al. Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci. 2011;12(11):7569–80.PubMedCentralPubMedCrossRef Wang Y, Gao L, Li Y, Sun Z, et al. Nifedipine protects INS-1 β-cell from high glucose-induced ER stress and apoptosis. Int J Mol Sci. 2011;12(11):7569–80.PubMedCentralPubMedCrossRef
60.
go back to reference Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12(1):77–85.PubMedCentralPubMedCrossRef Giorgi C, Agnoletto C, Bononi A, et al. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion. 2012;12(1):77–85.PubMedCentralPubMedCrossRef
61.
go back to reference Wang Y, Nishi M, Doi A, et al. Ghrelin inhibits insulin secretion through the AMPK–UCP2 pathway in beta cells. FEBS Lett. 2010;584(8):1503–8.PubMedCrossRef Wang Y, Nishi M, Doi A, et al. Ghrelin inhibits insulin secretion through the AMPK–UCP2 pathway in beta cells. FEBS Lett. 2010;584(8):1503–8.PubMedCrossRef
62.
go back to reference Buschard K, Hy M, Bokvist K, et al. Sulfatide controls insulin secretion by modulation of ATP-sensitive K(+)-channel activity and Ca(2+)-dependent exocytosis in rat pancreatic beta-cells. Diabetes. 2002;51:2514–21.PubMedCrossRef Buschard K, Hy M, Bokvist K, et al. Sulfatide controls insulin secretion by modulation of ATP-sensitive K(+)-channel activity and Ca(2+)-dependent exocytosis in rat pancreatic beta-cells. Diabetes. 2002;51:2514–21.PubMedCrossRef
63.
go back to reference Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105:745–55.PubMedCrossRef Zhang CY, Baffy G, Perret P, et al. Uncoupling protein-2 negatively regulates insulin secretion and is a major link between obesity, beta cell dysfunction, and type 2 diabetes. Cell. 2001;105:745–55.PubMedCrossRef
64.
go back to reference Lee SH, Lee HY, Kim SY, et al. Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract. 2004;66 Suppl 1:S69–74.PubMed Lee SH, Lee HY, Kim SY, et al. Enhancing effect of taurine on glucose response in UCP2-overexpressing beta cells. Diabetes Res Clin Pract. 2004;66 Suppl 1:S69–74.PubMed
65.
go back to reference Ma X, Lin Y, Lin L, et al. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice. Am J Physiol Endocrinol Metab. 2012;303(3):E422–31.PubMedCentralPubMedCrossRef Ma X, Lin Y, Lin L, et al. Ablation of ghrelin receptor in leptin-deficient ob/ob mice has paradoxical effects on glucose homeostasis when compared with ablation of ghrelin in ob/ob mice. Am J Physiol Endocrinol Metab. 2012;303(3):E422–31.PubMedCentralPubMedCrossRef
Metadata
Title
Gastric Bypass Surgery May Improve Beta Cell Apoptosis with Ghrelin Overexpression in Patients with BMI ≥ 32.5 kg/m2
Authors
Jian Yang
Xiao Feng
Shuzhe Zhong
Yong Wang
Jingang Liu
Publication date
01-04-2014
Publisher
Springer US
Published in
Obesity Surgery / Issue 4/2014
Print ISSN: 0960-8923
Electronic ISSN: 1708-0428
DOI
https://doi.org/10.1007/s11695-013-1135-4

Other articles of this Issue 4/2014

Obesity Surgery 4/2014 Go to the issue