Skip to main content
Top
Published in: BMC Pediatrics 1/2021

Open Access 01-12-2021 | Study protocol

Game-based training of selective voluntary motor control in children and youth with upper motor neuron lesions: protocol for a multiple baseline design study

Authors: Annina Fahr, Andrina Kläy, Larissa S. Coka, Hubertus J. A. van Hedel

Published in: BMC Pediatrics | Issue 1/2021

Login to get access

Abstract

Background

Impairments of selective control of joint movements can have consequences for many activities of daily life, but there are only a few interventions to improve selective voluntary motor control (SVMC). We have developed a treatment option to specifically enhance SVMC exploiting the advantages of interactive computer play technology. It targets SVMC by training selective activation of a muscle or a selective joint movement while it provides immediate feedback about involuntary muscle activations/movements at an (unwanted) joint. This study aims to investigate the effectiveness of this game-based intervention to enhance SVMC in children and youth with upper motor neuron lesions.

Methods

We will conduct a randomized, non-concurrent, multiple baseline design study. Patients aged between 6 and 20 years with reduced SVMC due to an upper motor neuron lesion will be included. During the baseline phase of random length, participants will attend their regular intensive rehabilitation program, and in the intervention phase, they will additionally complete 10 therapy sessions (à 40 min) of the game-based SVMC training. The primary outcome will be a short SVMC assessment conducted repeatedly throughout both phases, which quantifies movement accuracy and involuntary movements. Changes in clinical SVMC measures, muscle strength, cortical excitability, motor control of the inhibited/unwanted movement, and functional independence will be assessed as secondary outcomes. We will use a mixed-effect model to determine the change in the course of the primary outcome when the intervention is introduced, and we will compare changes between phases for secondary outcomes with paired tests.

Discussion

This study will provide first evidence whether SVMC can be improved with our game-based training. The single-case design takes into account the individualization required for this intervention, and it can help to address the challenges of intervention trials in our setting.

Trial registration

German Clinical Trials Register: DRKS00025184, registered on 28.04.2021.
Appendix
Available only for authorised users
Literature
1.
go back to reference Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol. 2014;56(6):522–8.PubMedCrossRef Cahill-Rowley K, Rose J. Etiology of impaired selective motor control: emerging evidence and its implications for research and treatment in cerebral palsy. Dev Med Child Neurol. 2014;56(6):522–8.PubMedCrossRef
2.
go back to reference Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118(5):2159–67.PubMedCrossRef Sanger TD, Chen D, Delgado MR, Gaebler-Spira D, Hallett M, Mink JW. Definition and classification of negative motor signs in childhood. Pediatrics. 2006;118(5):2159–67.PubMedCrossRef
3.
go back to reference Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production - a review. Brain Res Rev. 2007;54(1):189–204.PubMedCrossRef Addamo PK, Farrow M, Hoy KE, Bradshaw JL, Georgiou-Karistianis N. The effects of age and attention on motor overflow production - a review. Brain Res Rev. 2007;54(1):189–204.PubMedCrossRef
4.
go back to reference Perry J. Determinants of muscle function in the spastic lower extremity. Clin Orthop Relat Res. 1993;288:10–26.CrossRef Perry J. Determinants of muscle function in the spastic lower extremity. Clin Orthop Relat Res. 1993;288:10–26.CrossRef
5.
go back to reference Adler C, Berweck S, Lidzba K, Becher T, Staudt M. Mirror movements in unilateral spastic cerebral palsy: specific negative impact on bimanual activities of daily living. Eur J Paediatr Neurol. 2015;19(5):504–9.PubMedCrossRef Adler C, Berweck S, Lidzba K, Becher T, Staudt M. Mirror movements in unilateral spastic cerebral palsy: specific negative impact on bimanual activities of daily living. Eur J Paediatr Neurol. 2015;19(5):504–9.PubMedCrossRef
6.
go back to reference Kuo H-C, Friel KM, Gordon AM. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy. Dev Med Child Neurol. 2018;60(2):155–61.PubMedCrossRef Kuo H-C, Friel KM, Gordon AM. Neurophysiological mechanisms and functional impact of mirror movements in children with unilateral spastic cerebral palsy. Dev Med Child Neurol. 2018;60(2):155–61.PubMedCrossRef
7.
go back to reference Schiariti V, Mâsse LC. Relevant areas of functioning in children with cerebral palsy based on the international classification of functioning, disability and health coding system: a clinical perspective. J Child Neurol. 2015;30(2):216–22.PubMedCrossRef Schiariti V, Mâsse LC. Relevant areas of functioning in children with cerebral palsy based on the international classification of functioning, disability and health coding system: a clinical perspective. J Child Neurol. 2015;30(2):216–22.PubMedCrossRef
8.
go back to reference Østensjø S, Carlberg EB, Vøllestad NK. Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Dev Med Child Neurol. 2004;46(9):580–9.PubMedCrossRef Østensjø S, Carlberg EB, Vøllestad NK. Motor impairments in young children with cerebral palsy: relationship to gross motor function and everyday activities. Dev Med Child Neurol. 2004;46(9):580–9.PubMedCrossRef
9.
go back to reference Noble JJ, Gough M, Shortland AP. Selective motor control and gross motor function in bilateral spastic cerebral palsy. Dev Med Child Neurol. 2019;61(1):57–61.PubMedCrossRef Noble JJ, Gough M, Shortland AP. Selective motor control and gross motor function in bilateral spastic cerebral palsy. Dev Med Child Neurol. 2019;61(1):57–61.PubMedCrossRef
10.
go back to reference Vos RC, Becher JG, Voorman JM, Gorter JW, van Eck M, van Meeteren J, et al. Longitudinal association between gross motor capacity and neuromusculoskeletal function in children and youth with cerebral palsy. Arch Phys Med Rehabil. 2016;97(8):1329–37.PubMedCrossRef Vos RC, Becher JG, Voorman JM, Gorter JW, van Eck M, van Meeteren J, et al. Longitudinal association between gross motor capacity and neuromusculoskeletal function in children and youth with cerebral palsy. Arch Phys Med Rehabil. 2016;97(8):1329–37.PubMedCrossRef
11.
go back to reference Voorman JM, Dallmeijer AJ, Knol DL, Lankhorst GJ, Becher JG. Prospective longitudinal study of gross motor function in children with cerebral palsy. Arch Phys Med Rehabil. 2007;88(7):871–6.PubMedCrossRef Voorman JM, Dallmeijer AJ, Knol DL, Lankhorst GJ, Becher JG. Prospective longitudinal study of gross motor function in children with cerebral palsy. Arch Phys Med Rehabil. 2007;88(7):871–6.PubMedCrossRef
12.
go back to reference Zhou JY, Lowe E, Cahill-Rowley K, Mahtani GB, Young JL, Rose J. Influence of impaired selective motor control on gait in children with cerebral palsy. J Child Orthop. 2019;13(1):73–81.PubMedPubMedCentralCrossRef Zhou JY, Lowe E, Cahill-Rowley K, Mahtani GB, Young JL, Rose J. Influence of impaired selective motor control on gait in children with cerebral palsy. J Child Orthop. 2019;13(1):73–81.PubMedPubMedCentralCrossRef
13.
go back to reference Fahr A, Keller JW, van Hedel HJA. A systematic review of training methods that may improve selective voluntary motor control in children with spastic cerebral palsy. Front Neurol. 2020;11:1620.CrossRef Fahr A, Keller JW, van Hedel HJA. A systematic review of training methods that may improve selective voluntary motor control in children with spastic cerebral palsy. Front Neurol. 2020;11:1620.CrossRef
14.
go back to reference Wu Y-N, Hwang M, Ren Y, Gaebler-Spira D, Zhang L-Q. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011;25(4):378–85.PubMedCrossRef Wu Y-N, Hwang M, Ren Y, Gaebler-Spira D, Zhang L-Q. Combined passive stretching and active movement rehabilitation of lower-limb impairments in children with cerebral palsy using a portable robot. Neurorehabil Neural Repair. 2011;25(4):378–85.PubMedCrossRef
15.
go back to reference Rios DC, Gilbertson T, McCoy SW, Price R, Gutman K, Miller KEF, et al. NeuroGame therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil. 2013;16(6):398–409.PubMedCrossRef Rios DC, Gilbertson T, McCoy SW, Price R, Gutman K, Miller KEF, et al. NeuroGame therapy to improve wrist control in children with cerebral palsy: a case series. Dev Neurorehabil. 2013;16(6):398–409.PubMedCrossRef
16.
17.
go back to reference Fahr A, Kläy A, Keller JW, van Hedel HJA. An interactive computer game for improving selective voluntary motor control in children with upper motor neuron lesions: development and preliminary feasibility study. JMIR Serious Games. 2021;9(3):e26028.PubMedPubMedCentralCrossRef Fahr A, Kläy A, Keller JW, van Hedel HJA. An interactive computer game for improving selective voluntary motor control in children with upper motor neuron lesions: development and preliminary feasibility study. JMIR Serious Games. 2021;9(3):e26028.PubMedPubMedCentralCrossRef
18.
go back to reference Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.PubMedCrossRef Palisano R, Rosenbaum P, Walter S, Russell D, Wood E, Galuppi B. Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev Med Child Neurol. 1997;39(4):214–23.PubMedCrossRef
19.
go back to reference Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A-M, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.PubMedCrossRef Eliasson A-C, Krumlinde-Sundholm L, Rösblad B, Beckung E, Arner M, Öhrvall A-M, et al. The manual ability classification system (MACS) for children with cerebral palsy: scale development and evidence of validity and reliability. Dev Med Child Neurol. 2006;48(7):549–54.PubMedCrossRef
20.
go back to reference Hislop H, Avers D, Brown M. Daniels and Worthingham’s muscle testing: techniques of manual examination and performance testing. 9th ed: Elsevier Health Sciences; 2013. Hislop H, Avers D, Brown M. Daniels and Worthingham’s muscle testing: techniques of manual examination and performance testing. 9th ed: Elsevier Health Sciences; 2013.
21.
go back to reference Bohannon R, Smith M. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.PubMedCrossRef Bohannon R, Smith M. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206–7.PubMedCrossRef
22.
go back to reference Jethwa A, Mink J, Macarthur C, Knights S, Fehlings T, Fehlings D. Development of the hypertonia assessment tool (HAT): a discriminative tool for hypertonia in children. Dev Med Child Neurol. 2010;52(5):e83–7.PubMedCrossRef Jethwa A, Mink J, Macarthur C, Knights S, Fehlings T, Fehlings D. Development of the hypertonia assessment tool (HAT): a discriminative tool for hypertonia in children. Dev Med Child Neurol. 2010;52(5):e83–7.PubMedCrossRef
23.
go back to reference Marsico P, Frontzek-Weps V, Balzer J, van Hedel HJA. Hypertonia assessment tool: reliability and validity in children with neuromotor disorders. J Child Neurol. 2017;32(1):132–8.PubMedCrossRef Marsico P, Frontzek-Weps V, Balzer J, van Hedel HJA. Hypertonia assessment tool: reliability and validity in children with neuromotor disorders. J Child Neurol. 2017;32(1):132–8.PubMedCrossRef
24.
go back to reference Wei LJ, Lachin JM. Properties of the urn randomization in clinical trials. Control Clin Trials. 1988;9(4):345–64.PubMedCrossRef Wei LJ, Lachin JM. Properties of the urn randomization in clinical trials. Control Clin Trials. 1988;9(4):345–64.PubMedCrossRef
25.
go back to reference Keller JW, Balzer J, Fahr A, Lieber J, Keller U, van Hedel HJA. First validation of a novel assessgame quantifying selective voluntary motor control in children with upper motor neuron lesions. Sci Rep. 2019;9(1):19972.PubMedPubMedCentralCrossRef Keller JW, Balzer J, Fahr A, Lieber J, Keller U, van Hedel HJA. First validation of a novel assessgame quantifying selective voluntary motor control in children with upper motor neuron lesions. Sci Rep. 2019;9(1):19972.PubMedPubMedCentralCrossRef
26.
go back to reference Keller JW, Fahr A, Balzer J, Lieber J, van Hedel HJA. Validity and reliability of an accelerometer-based assessgame to quantify upper limb selective voluntary motor control. J Neuroeng Rehabil. 2020;17(1):89.PubMedPubMedCentralCrossRef Keller JW, Fahr A, Balzer J, Lieber J, van Hedel HJA. Validity and reliability of an accelerometer-based assessgame to quantify upper limb selective voluntary motor control. J Neuroeng Rehabil. 2020;17(1):89.PubMedPubMedCentralCrossRef
27.
go back to reference Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective control assessment of the lower extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51(8):607–14.PubMedCrossRef Fowler EG, Staudt LA, Greenberg MB, Oppenheim WL. Selective control assessment of the lower extremity (SCALE): development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev Med Child Neurol. 2009;51(8):607–14.PubMedCrossRef
28.
go back to reference Wagner LV, Davids JR, Hardin JW. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2016;58(6):612–7.PubMedCrossRef Wagner LV, Davids JR, Hardin JW. Selective Control of the Upper Extremity Scale: validation of a clinical assessment tool for children with hemiplegic cerebral palsy. Dev Med Child Neurol. 2016;58(6):612–7.PubMedCrossRef
29.
go back to reference Balzer J, Marsico P, Mitteregger E, van der Linden ML, Mercer TH, van Hedel HJA. Construct validity and reliability of the selective control assessment of the lower extremity in children with cerebral palsy. Dev Med Child Neurol. 2016;58(2):167–72.PubMedCrossRef Balzer J, Marsico P, Mitteregger E, van der Linden ML, Mercer TH, van Hedel HJA. Construct validity and reliability of the selective control assessment of the lower extremity in children with cerebral palsy. Dev Med Child Neurol. 2016;58(2):167–72.PubMedCrossRef
31.
go back to reference Balzer J, Marsico P, Mitteregger E, van der Linden MLML, Mercer THTH, van Hedel HJAHJA. Influence of trunk control and lower extremity impairments on gait capacity in children with cerebral palsy. Disabil Rehabil. 2018;40(26):3164–70.PubMedCrossRef Balzer J, Marsico P, Mitteregger E, van der Linden MLML, Mercer THTH, van Hedel HJAHJA. Influence of trunk control and lower extremity impairments on gait capacity in children with cerebral palsy. Disabil Rehabil. 2018;40(26):3164–70.PubMedCrossRef
32.
go back to reference van Hedel HJA, Murer C, Dietz V, Curt A. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task. J Neurol. 2007;254(8):1089–98.PubMedCrossRef van Hedel HJA, Murer C, Dietz V, Curt A. The amplitude of lower leg motor evoked potentials is a reliable measure when controlled for torque and motor task. J Neurol. 2007;254(8):1089–98.PubMedCrossRef
34.
go back to reference Uniform Data System for Medical Rehabilitation. The WeeFIM II Clinical Guide, Version 6.0. Buffalo: UDSMR; 2006. Uniform Data System for Medical Rehabilitation. The WeeFIM II Clinical Guide, Version 6.0. Buffalo: UDSMR; 2006.
35.
go back to reference Cohen J. Statistical power analysis for the behavioral sciences (revised ed). New York: Academic Press; 1977. Cohen J. Statistical power analysis for the behavioral sciences (revised ed). New York: Academic Press; 1977.
37.
go back to reference Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof. 2003;26(3):239–57.PubMedCrossRef Hsieh FY, Lavori PW, Cohen HJ, Feussner JR. An overview of variance inflation factors for sample-size calculation. Eval Health Prof. 2003;26(3):239–57.PubMedCrossRef
39.
go back to reference Beckers LWME, Stal RA, Smeets RJE, Onghena P, Bastiaenen CHG. Single-case design studies in children with cerebral palsy: a scoping review. Dev Neurorehabil. 2020;23(2):73–105.PubMedCrossRef Beckers LWME, Stal RA, Smeets RJE, Onghena P, Bastiaenen CHG. Single-case design studies in children with cerebral palsy: a scoping review. Dev Neurorehabil. 2020;23(2):73–105.PubMedCrossRef
40.
go back to reference Ledford JR, Gast DL, editors. Single case research methodology: applications in special education and behavioral sciences. 3rd ed. New York: Routledge; 2014. Ledford JR, Gast DL, editors. Single case research methodology: applications in special education and behavioral sciences. 3rd ed. New York: Routledge; 2014.
42.
go back to reference Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: a practical guide. Ann Phys Rehabil Med. 2018;61(3):164–79.PubMedCrossRef Krasny-Pacini A, Evans J. Single-case experimental designs to assess intervention effectiveness in rehabilitation: a practical guide. Ann Phys Rehabil Med. 2018;61(3):164–79.PubMedCrossRef
44.
go back to reference Shamseer L, Sampson M, Bukutu C, Schmid CH, Nikles J, Tate R, et al. CONSORT extension for reporting N-of-1 trials (CENT) 2015: explanation and elaboration. BMJ. 2015;350:h1793.PubMedCrossRef Shamseer L, Sampson M, Bukutu C, Schmid CH, Nikles J, Tate R, et al. CONSORT extension for reporting N-of-1 trials (CENT) 2015: explanation and elaboration. BMJ. 2015;350:h1793.PubMedCrossRef
45.
go back to reference Romeiser-Logan L, Slaughter R, Hickman R. Single-subject research designs in pediatric rehabilitation: a valuable step towards knowledge translation. Dev Med Child Neurol. 2017;59(6):574–80.PubMedCrossRef Romeiser-Logan L, Slaughter R, Hickman R. Single-subject research designs in pediatric rehabilitation: a valuable step towards knowledge translation. Dev Med Child Neurol. 2017;59(6):574–80.PubMedCrossRef
46.
go back to reference Rast FM, Labruyère R. ICF mobility and self-care goals of children in inpatient rehabilitation. Dev Med Child Neurol. 2020;62(4):483–8.PubMedCrossRef Rast FM, Labruyère R. ICF mobility and self-care goals of children in inpatient rehabilitation. Dev Med Child Neurol. 2020;62(4):483–8.PubMedCrossRef
47.
go back to reference Sukal-Moulton T, Clancy T, Zhang L-Q, Gaebler-Spira D. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014;95(8):1433–40.PubMedPubMedCentralCrossRef Sukal-Moulton T, Clancy T, Zhang L-Q, Gaebler-Spira D. Clinical application of a robotic ankle training program for cerebral palsy compared to the research laboratory application: does it translate to practice? Arch Phys Med Rehabil. 2014;95(8):1433–40.PubMedPubMedCentralCrossRef
48.
go back to reference Chen K, Wu Y-N, Ren Y, Liu L, Gaebler-Spira D, Tankard K, et al. Home-based versus laboratory-based robotic ankle training for children with cerebral palsy: a pilot randomized comparative trial. Arch Phys Med Rehabil. 2016;97(8):1237–43.PubMedCrossRef Chen K, Wu Y-N, Ren Y, Liu L, Gaebler-Spira D, Tankard K, et al. Home-based versus laboratory-based robotic ankle training for children with cerebral palsy: a pilot randomized comparative trial. Arch Phys Med Rehabil. 2016;97(8):1237–43.PubMedCrossRef
49.
go back to reference Keller JW, Fahr A, Balzer J, Lieber J, van Hedel HJ. Validity and reliability of an electromyography-based upper limb assessment quantifying selective voluntary motor control in children with upper motor neuron lesions. Sci Prog. 2021;104(2):368504211008058. https://doi.org/10.1177/00368504211008058. Keller JW, Fahr A, Balzer J, Lieber J, van Hedel HJ. Validity and reliability of an electromyography-based upper limb assessment quantifying selective voluntary motor control in children with upper motor neuron lesions. Sci Prog. 2021;104(2):368504211008058. https://​doi.​org/​10.​1177/​0036850421100805​8.
Metadata
Title
Game-based training of selective voluntary motor control in children and youth with upper motor neuron lesions: protocol for a multiple baseline design study
Authors
Annina Fahr
Andrina Kläy
Larissa S. Coka
Hubertus J. A. van Hedel
Publication date
01-12-2021
Publisher
BioMed Central
Published in
BMC Pediatrics / Issue 1/2021
Electronic ISSN: 1471-2431
DOI
https://doi.org/10.1186/s12887-021-02983-8

Other articles of this Issue 1/2021

BMC Pediatrics 1/2021 Go to the issue