Skip to main content
Top
Published in: Journal of Translational Medicine 1/2024

Open Access 01-12-2024 | Gallbladder Cancer | Research

Acylcarnitines promote gallbladder cancer metastasis through lncBCL2L11-THOC5-JNK axis

Authors: Yang Yang, Huaifeng Li, Ke Liu, Lu Zou, Shanshan Xiang, Yajun Geng, Xuechuan Li, Shimei Qiu, Jiahua Yang, Xuya Cui, Lin li, Yang Li, Weijian Li, Siyuan Yan, Liguo Liu, Xiangsong Wu, Fatao Liu, Wenguang Wu, Shili Chen, Yingbin Liu

Published in: Journal of Translational Medicine | Issue 1/2024

Login to get access

Abstract

Background

The progression of gallbladder cancer (GBC) is accompanied by abnormal fatty acid β-oxidation (FAO) metabolism. Different types of lipids perform various biological functions. This study aimed to determine the role of acyl carnitines in the molecular mechanisms of GBC progression.

Methods

Distribution of lipids in GBC was described by LC–MS-based lipidomics. Cellular localization, expression level and full-length of lncBCL2L11 were detected using fluorescence in situ hybridization (FISH) assays, subcellular fractionation assay and 5′ and 3′ rapid amplification of the cDNA ends (RACE), respectively. In vitro and in vivo experiments were used to verify the biological function of lncBCL2L11 in GBC cells. Methylated RNA Immunoprecipitation (MeRIP) was performed to detect the methylation levels of lncBCL2L11. RNA pull-down assay and RNA immunoprecipitation (RIP) assay were used to identify lncBCL2L11 interacting proteins. Co-Immunoprecipitation (Co-IP) and Western blot assay were performed to validate the regulatory mechanism of lncBCL2L11 and THO complex.

Results

Acylcarnitines were significantly up-regulated in GBC tissues. High serum triglycerides correlated to decreased survival in GBC patients and promoted tumor migration. LncBCL2L11 was identified in the joint analysis of highly metastatic cells and RNA sequencing data. LncBCl2L11 prevented the binding of THOC6 and THOC5 and causes the degradation of THOC5, thus promoting the accumulation of acylcarnitines in GBC cells, leading to the malignant progression of cancer cells. In addition, highly expressed acylcarnitines stabilized the expression of lncBCL2L11 through N6-methyladenosine methylation (m6A), forming a positive feedback regulation in tumor dissemination.

Conclusions

LncBCL2L11 is involved in gallbladder cancer metastasis through FAO metabolism. High lipid intake is associated with poor prognosis of GBC. Therefore, targeting lncBCL2L11 and its pathway-related proteins or reducing lipid intake may be significant for the treatment of GBC patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Wu XS, Shi LB, Li ML, et al. Evaluation of two inflammation-based prognostic scores in patients with resectable gallbladder carcinoma. Ann Surg Oncol. 2014;21(2):449–57.PubMedCrossRef Wu XS, Shi LB, Li ML, et al. Evaluation of two inflammation-based prognostic scores in patients with resectable gallbladder carcinoma. Ann Surg Oncol. 2014;21(2):449–57.PubMedCrossRef
2.
go back to reference Butte JM, Matsuo K, GöNEN M, et al. Gallbladder cancer: differences in presentation, surgical treatment, and survival in patients treated at centers in three countries. J Am Coll Surg. 2011;212(1):50–61.PubMedCrossRef Butte JM, Matsuo K, GöNEN M, et al. Gallbladder cancer: differences in presentation, surgical treatment, and survival in patients treated at centers in three countries. J Am Coll Surg. 2011;212(1):50–61.PubMedCrossRef
3.
go back to reference Xiang S, Wang Z, Ye Y, et al. E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer. Oncogene. 2019;38(8):1269–81.PubMedCrossRef Xiang S, Wang Z, Ye Y, et al. E2F1 and E2F7 differentially regulate KPNA2 to promote the development of gallbladder cancer. Oncogene. 2019;38(8):1269–81.PubMedCrossRef
4.
go back to reference Zhang L, Jiang L, Zeng L, et al. The oncogenic role of NF1 in gallbladder cancer through regulation of YAP1 stability by direct interaction with YAP1. J Transl Med. 2023;21(1):306.PubMedPubMedCentralCrossRef Zhang L, Jiang L, Zeng L, et al. The oncogenic role of NF1 in gallbladder cancer through regulation of YAP1 stability by direct interaction with YAP1. J Transl Med. 2023;21(1):306.PubMedPubMedCentralCrossRef
5.
go back to reference Zhao C, Yang ZY, Zhang J, et al. Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway. J Transl Med. 2022;20(1):434.PubMedPubMedCentralCrossRef Zhao C, Yang ZY, Zhang J, et al. Inhibition of XPO1 with KPT-330 induces autophagy-dependent apoptosis in gallbladder cancer by activating the p53/mTOR pathway. J Transl Med. 2022;20(1):434.PubMedPubMedCentralCrossRef
8.
go back to reference Azizi AA, Lamarca A, McNamara MG, et al. Chemotherapy for advanced gallbladder cancer (GBC): a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;163: 103328.PubMedCrossRef Azizi AA, Lamarca A, McNamara MG, et al. Chemotherapy for advanced gallbladder cancer (GBC): a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2021;163: 103328.PubMedCrossRef
9.
go back to reference Squadroni M, Tondulli L, Gatta G, et al. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2017;116:11–31.PubMedCrossRef Squadroni M, Tondulli L, Gatta G, et al. Cholangiocarcinoma. Crit Rev Oncol Hematol. 2017;116:11–31.PubMedCrossRef
10.
11.
go back to reference Pawlik TM, Gleisner AL, Vigano L, et al. Incidence of finding residual disease for incidental gallbladder carcinoma: implications for re-resection. J Gastrointest Surg. 2007;11(11):1478–86.PubMedCrossRef Pawlik TM, Gleisner AL, Vigano L, et al. Incidence of finding residual disease for incidental gallbladder carcinoma: implications for re-resection. J Gastrointest Surg. 2007;11(11):1478–86.PubMedCrossRef
12.
go back to reference Vander Heiden MG, Deberardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.PubMedCrossRef Vander Heiden MG, Deberardinis RJ. Understanding the intersections between metabolism and cancer biology. Cell. 2017;168(4):657–69.PubMedCrossRef
13.
go back to reference Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 2022;11(1):46.PubMedPubMedCentralCrossRef Vasseur S, Guillaumond F. Lipids in cancer: a global view of the contribution of lipid pathways to metastatic formation and treatment resistance. Oncogenesis. 2022;11(1):46.PubMedPubMedCentralCrossRef
14.
go back to reference Qu Q, Zeng F, Liu X, et al. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7(5): e2226.PubMedPubMedCentralCrossRef Qu Q, Zeng F, Liu X, et al. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell Death Dis. 2016;7(5): e2226.PubMedPubMedCentralCrossRef
16.
17.
go back to reference Attané C, Muller C. Drilling for oil: tumor-surrounding adipocytes fueling cancer. Trends Cancer. 2020;6(7):593–604.PubMedCrossRef Attané C, Muller C. Drilling for oil: tumor-surrounding adipocytes fueling cancer. Trends Cancer. 2020;6(7):593–604.PubMedCrossRef
18.
go back to reference Wu H, Liu B, Chen Z, et al. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11(4):233.PubMedPubMedCentralCrossRef Wu H, Liu B, Chen Z, et al. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis. 2020;11(4):233.PubMedPubMedCentralCrossRef
19.
go back to reference Han J, Qu H, Han M, et al. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene. 2021;40(4):833–47.PubMedCrossRef Han J, Qu H, Han M, et al. MSC-induced lncRNA AGAP2-AS1 promotes stemness and trastuzumab resistance through regulating CPT1 expression and fatty acid oxidation in breast cancer. Oncogene. 2021;40(4):833–47.PubMedCrossRef
20.
go back to reference Jayalakshmi K, Sonkar K, Behari A, et al. Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy. NMR Biomed. 2011;24(4):335–42.PubMedCrossRef Jayalakshmi K, Sonkar K, Behari A, et al. Lipid profiling of cancerous and benign gallbladder tissues by 1H NMR spectroscopy. NMR Biomed. 2011;24(4):335–42.PubMedCrossRef
21.
go back to reference Cheng H, Sun Y, Yu X, et al. FASN promotes gallbladder cancer progression and reduces cancer cell sensitivity to gemcitabine through PI3K/AKT signaling. Drug Discov Ther. 2023;17(5):328–39.PubMedCrossRef Cheng H, Sun Y, Yu X, et al. FASN promotes gallbladder cancer progression and reduces cancer cell sensitivity to gemcitabine through PI3K/AKT signaling. Drug Discov Ther. 2023;17(5):328–39.PubMedCrossRef
22.
go back to reference Zhang Y, Liu Y, Duan J, et al. Cholesterol depletion sensitizes gallbladder cancer to cisplatin by impairing DNA damage response. Cell Cycle (Georgetown, Tex). 2019;18(23):3337–50.PubMedCrossRef Zhang Y, Liu Y, Duan J, et al. Cholesterol depletion sensitizes gallbladder cancer to cisplatin by impairing DNA damage response. Cell Cycle (Georgetown, Tex). 2019;18(23):3337–50.PubMedCrossRef
23.
go back to reference Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.PubMedPubMedCentralCrossRef Tsugawa H, Cajka T, Kind T, et al. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods. 2015;12(6):523–6.PubMedPubMedCentralCrossRef
24.
25.
go back to reference Ren T, Li Y, Zhang X, et al. Protocol for a gallbladder cancer registry study in China: the Chinese Research Group of Gallbladder Cancer (CRGGC) study. BMJ Open. 2021;11(2): e038634.PubMedPubMedCentralCrossRef Ren T, Li Y, Zhang X, et al. Protocol for a gallbladder cancer registry study in China: the Chinese Research Group of Gallbladder Cancer (CRGGC) study. BMJ Open. 2021;11(2): e038634.PubMedPubMedCentralCrossRef
26.
go back to reference Li H, Hu Y, Jin Y, et al. Long noncoding RNA lncGALM increases risk of liver metastasis in gallbladder cancer through facilitating N-cadherin and IL-1β-dependent liver arrest and tumor extravasation. Clin Transl Med. 2020;10(7): e201.PubMedPubMedCentralCrossRef Li H, Hu Y, Jin Y, et al. Long noncoding RNA lncGALM increases risk of liver metastasis in gallbladder cancer through facilitating N-cadherin and IL-1β-dependent liver arrest and tumor extravasation. Clin Transl Med. 2020;10(7): e201.PubMedPubMedCentralCrossRef
27.
go back to reference Wang L, Park HJ, Dasari S, et al. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6): e74.PubMedPubMedCentralCrossRef Wang L, Park HJ, Dasari S, et al. CPAT: coding-potential assessment tool using an alignment-free logistic regression model. Nucleic Acids Res. 2013;41(6): e74.PubMedPubMedCentralCrossRef
28.
go back to reference Zhao Z, Meng J, Su R, et al. Epitranscriptomics in liver disease: basic concepts and therapeutic potential. J Hepatol. 2020;73(3):664–79.PubMedCrossRef Zhao Z, Meng J, Su R, et al. Epitranscriptomics in liver disease: basic concepts and therapeutic potential. J Hepatol. 2020;73(3):664–79.PubMedCrossRef
29.
go back to reference Yang Z, Yu GL, Zhu X, et al. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: implications in lipid metabolic disorders. Genes Dis. 2022;9(1):51–61.PubMedCrossRef Yang Z, Yu GL, Zhu X, et al. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: implications in lipid metabolic disorders. Genes Dis. 2022;9(1):51–61.PubMedCrossRef
30.
go back to reference Yang Y, Cai J, Yang X, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef Yang Y, Cai J, Yang X, et al. Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther. 2022;30(6):2342–53.PubMedPubMedCentralCrossRef
31.
go back to reference Xu Z, Qin Y, Lv B, et al. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6a methylation in the heart. Nutrients. 2022;14(2):251.PubMedPubMedCentralCrossRef Xu Z, Qin Y, Lv B, et al. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6a methylation in the heart. Nutrients. 2022;14(2):251.PubMedPubMedCentralCrossRef
32.
go back to reference Zhou Y, Zeng P, Li YH, et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10): e91.PubMedPubMedCentralCrossRef Zhou Y, Zeng P, Li YH, et al. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44(10): e91.PubMedPubMedCentralCrossRef
34.
go back to reference Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.PubMedCrossRef Statello L, Guo CJ, Chen LL, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 2021;22(2):96–118.PubMedCrossRef
35.
36.
go back to reference Wu ZR, Yan L, Liu YT, et al. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun. 2018;9(1):4624.PubMedPubMedCentralCrossRef Wu ZR, Yan L, Liu YT, et al. Inhibition of mTORC1 by lncRNA H19 via disrupting 4E-BP1/Raptor interaction in pituitary tumours. Nat Commun. 2018;9(1):4624.PubMedPubMedCentralCrossRef
37.
go back to reference Ruaud L, Roux N, Boutaud L, et al. Biallelic THOC6 pathogenic variants: prenatal phenotype and review of the literature. Birth defects Res. 2022;114(10):499–504.PubMedCrossRef Ruaud L, Roux N, Boutaud L, et al. Biallelic THOC6 pathogenic variants: prenatal phenotype and review of the literature. Birth defects Res. 2022;114(10):499–504.PubMedCrossRef
39.
go back to reference Wang F, Wang B, Qiao L. Association between obesity and gallbladder cancer. Front Biosci. 2012;17(7):2550–8.CrossRef Wang F, Wang B, Qiao L. Association between obesity and gallbladder cancer. Front Biosci. 2012;17(7):2550–8.CrossRef
40.
go back to reference Sharma A, Sharma KL, Gupta A, et al. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: recent update. World J Gastroenterol. 2017;23(22):3978–98.PubMedPubMedCentralCrossRef Sharma A, Sharma KL, Gupta A, et al. Gallbladder cancer epidemiology, pathogenesis and molecular genetics: recent update. World J Gastroenterol. 2017;23(22):3978–98.PubMedPubMedCentralCrossRef
41.
go back to reference Hong J, Guo F, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut. 2021;70(11):2123–37.PubMedCrossRef Hong J, Guo F, Lu SY, et al. F. nucleatum targets lncRNA ENO1-IT1 to promote glycolysis and oncogenesis in colorectal cancer. Gut. 2021;70(11):2123–37.PubMedCrossRef
42.
go back to reference Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24(12):1403–19.PubMedPubMedCentralCrossRef Zhao X, Yang Y, Sun BF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24(12):1403–19.PubMedPubMedCentralCrossRef
43.
go back to reference Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25(7):1816-28.e4.PubMedPubMedCentralCrossRef Zhong X, Yu J, Frazier K, et al. Circadian clock regulation of hepatic lipid metabolism by modulation of m(6)A mRNA methylation. Cell Rep. 2018;25(7):1816-28.e4.PubMedPubMedCentralCrossRef
44.
go back to reference Lu N, Li X, Yu J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids. 2018;53(1):53–63.PubMedCrossRef Lu N, Li X, Yu J, et al. Curcumin attenuates lipopolysaccharide-induced hepatic lipid metabolism disorder by modification of m(6) A RNA methylation in piglets. Lipids. 2018;53(1):53–63.PubMedCrossRef
45.
go back to reference Li Y, Zhang Q, Cui G, et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genomics Proteomics Bioinformatics. 2020;18(4):371–83.PubMedPubMedCentralCrossRef Li Y, Zhang Q, Cui G, et al. m(6)A regulates liver metabolic disorders and hepatogenous diabetes. Genomics Proteomics Bioinformatics. 2020;18(4):371–83.PubMedPubMedCentralCrossRef
46.
go back to reference Liu S, Chu B, Cai C, et al. DGCR5 promotes gallbladder cancer by sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK pathways. J Cancer. 2020;11(18):5466–77.PubMedPubMedCentralCrossRef Liu S, Chu B, Cai C, et al. DGCR5 promotes gallbladder cancer by sponging MiR-3619-5p via MEK/ERK1/2 and JNK/p38 MAPK pathways. J Cancer. 2020;11(18):5466–77.PubMedPubMedCentralCrossRef
47.
go back to reference Miao H, Geng Y, Li Y, et al. Novel protein kinase inhibitor TT-00420 inhibits gallbladder cancer by inhibiting JNK/JUN-mediated signaling pathway. Cell Oncol (Dordr). 2022;45(4):689–708.PubMedCrossRef Miao H, Geng Y, Li Y, et al. Novel protein kinase inhibitor TT-00420 inhibits gallbladder cancer by inhibiting JNK/JUN-mediated signaling pathway. Cell Oncol (Dordr). 2022;45(4):689–708.PubMedCrossRef
Metadata
Title
Acylcarnitines promote gallbladder cancer metastasis through lncBCL2L11-THOC5-JNK axis
Authors
Yang Yang
Huaifeng Li
Ke Liu
Lu Zou
Shanshan Xiang
Yajun Geng
Xuechuan Li
Shimei Qiu
Jiahua Yang
Xuya Cui
Lin li
Yang Li
Weijian Li
Siyuan Yan
Liguo Liu
Xiangsong Wu
Fatao Liu
Wenguang Wu
Shili Chen
Yingbin Liu
Publication date
01-12-2024
Publisher
BioMed Central
Published in
Journal of Translational Medicine / Issue 1/2024
Electronic ISSN: 1479-5876
DOI
https://doi.org/10.1186/s12967-024-05091-0

Other articles of this Issue 1/2024

Journal of Translational Medicine 1/2024 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine