Skip to main content
Top
Published in: Journal of Hematology & Oncology 1/2013

Open Access 01-12-2013 | Research

G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses

Authors: Mark P Rubinstein, Mohamed L Salem, Andrew L Doedens, Caitlin J Moore, Cody Chiuzan, Guillermo L Rivell, David J Cole, Ananda W Goldrath

Published in: Journal of Hematology & Oncology | Issue 1/2013

Login to get access

Abstract

Background

Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo.

Methods

We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice.

Results

We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation.

Conclusions

Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF.
Appendix
Available only for authorised users
Literature
1.
go back to reference Demetri GD, Griffin JD: Granulocyte colony-stimulating factor and its receptor. Blood. 1991, 78: 2791-2808.PubMed Demetri GD, Griffin JD: Granulocyte colony-stimulating factor and its receptor. Blood. 1991, 78: 2791-2808.PubMed
2.
go back to reference Lyman GH: Pegfilgrastim: a granulocyte colony-stimulating factor with sustained duration of action. Expert Opin Biol Ther. 2005, 5: 1635-1646. 10.1517/14712598.5.12.1635.CrossRefPubMed Lyman GH: Pegfilgrastim: a granulocyte colony-stimulating factor with sustained duration of action. Expert Opin Biol Ther. 2005, 5: 1635-1646. 10.1517/14712598.5.12.1635.CrossRefPubMed
3.
go back to reference Metcalf D: Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science. 1991, 254: 529-533. 10.1126/science.1948028.CrossRefPubMed Metcalf D: Control of granulocytes and macrophages: molecular, cellular, and clinical aspects. Science. 1991, 254: 529-533. 10.1126/science.1948028.CrossRefPubMed
4.
go back to reference Kaushansky K: Lineage-specific hematopoietic growth factors. N Engl J Med. 2006, 354: 2034-2045. 10.1056/NEJMra052706.CrossRefPubMed Kaushansky K: Lineage-specific hematopoietic growth factors. N Engl J Med. 2006, 354: 2034-2045. 10.1056/NEJMra052706.CrossRefPubMed
5.
go back to reference Bennett CL, Djulbegovic B, Norris LB, Armitage JO: Colony-stimulating factors for febrile neutropenia during cancer therapy. N Engl J Med. 2013, 368: 1131-1139. 10.1056/NEJMct1210890.PubMedCentralCrossRefPubMed Bennett CL, Djulbegovic B, Norris LB, Armitage JO: Colony-stimulating factors for febrile neutropenia during cancer therapy. N Engl J Med. 2013, 368: 1131-1139. 10.1056/NEJMct1210890.PubMedCentralCrossRefPubMed
6.
go back to reference Sung L, Dror Y: Clinical applications of granulocyte-colony stimulating factor. Front Biosci. 2007, 12: 1988-2002. 10.2741/2204.CrossRefPubMed Sung L, Dror Y: Clinical applications of granulocyte-colony stimulating factor. Front Biosci. 2007, 12: 1988-2002. 10.2741/2204.CrossRefPubMed
7.
go back to reference Pojda Z, Molineux G, Dexter TM: Hemopoietic effects of short-term in vivo treatment of mice with various doses of rhG-CSF. Exp Hematol. 1990, 18: 27-31.PubMed Pojda Z, Molineux G, Dexter TM: Hemopoietic effects of short-term in vivo treatment of mice with various doses of rhG-CSF. Exp Hematol. 1990, 18: 27-31.PubMed
8.
go back to reference Molineux G, Pojda Z, Dexter TM: A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood. 1990, 75: 563-569.PubMed Molineux G, Pojda Z, Dexter TM: A comparison of hematopoiesis in normal and splenectomized mice treated with granulocyte colony-stimulating factor. Blood. 1990, 75: 563-569.PubMed
9.
go back to reference de Haan G, Dontje B, Engel C, Loeffler M, Nijhof W: The kinetics of murine hematopoietic stem cells in vivo in response to prolonged increased mature blood cell production induced by granulocyte colony-stimulating factor. Blood. 1995, 86: 2986-2992.PubMed de Haan G, Dontje B, Engel C, Loeffler M, Nijhof W: The kinetics of murine hematopoietic stem cells in vivo in response to prolonged increased mature blood cell production induced by granulocyte colony-stimulating factor. Blood. 1995, 86: 2986-2992.PubMed
10.
go back to reference Tanikawa S, Nakao I, Tsuneoka K, Nara N: Effects of recombinant granulocyte colony-stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice. Exp Hematol. 1989, 17: 883-888.PubMed Tanikawa S, Nakao I, Tsuneoka K, Nara N: Effects of recombinant granulocyte colony-stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony-stimulating factor (rGM-CSF) on acute radiation hematopoietic injury in mice. Exp Hematol. 1989, 17: 883-888.PubMed
11.
go back to reference Tanaka T, Suda T, Suda J, Inoue T, Hirabayashi Y, Hirai H, Takaku F, Miura Y: Stimulatory effects of granulocyte colony-stimulating factor on colony-forming units-spleen (CFU-S) differentiation and pre-CFU-S proliferation in mice. Blood. 1991, 77: 2597-2602.PubMed Tanaka T, Suda T, Suda J, Inoue T, Hirabayashi Y, Hirai H, Takaku F, Miura Y: Stimulatory effects of granulocyte colony-stimulating factor on colony-forming units-spleen (CFU-S) differentiation and pre-CFU-S proliferation in mice. Blood. 1991, 77: 2597-2602.PubMed
12.
go back to reference Tamura M, Yoshino T, Hattori K, Kawamura A, Nomura H, Imai N, Ono M: Acceleration of the hemopoietic reconstitution in mice undergoing bone marrow transplantation by recombinant human granulocyte colony-stimulating factor. Transplantation. 1991, 51: 1166-1170. 10.1097/00007890-199106000-00005.CrossRefPubMed Tamura M, Yoshino T, Hattori K, Kawamura A, Nomura H, Imai N, Ono M: Acceleration of the hemopoietic reconstitution in mice undergoing bone marrow transplantation by recombinant human granulocyte colony-stimulating factor. Transplantation. 1991, 51: 1166-1170. 10.1097/00007890-199106000-00005.CrossRefPubMed
13.
go back to reference Dale DC, Boxer L, Liles WC: The phagocytes: neutrophils and monocytes. Blood. 2008, 112: 935-945. 10.1182/blood-2007-12-077917.CrossRefPubMed Dale DC, Boxer L, Liles WC: The phagocytes: neutrophils and monocytes. Blood. 2008, 112: 935-945. 10.1182/blood-2007-12-077917.CrossRefPubMed
14.
go back to reference Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H, Muller-Ruchholtz W, Schmitz N: G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol. 1994, 87: 609-613. 10.1111/j.1365-2141.1994.tb08321.x.CrossRefPubMed Dreger P, Haferlach T, Eckstein V, Jacobs S, Suttorp M, Loffler H, Muller-Ruchholtz W, Schmitz N: G-CSF-mobilized peripheral blood progenitor cells for allogeneic transplantation: safety, kinetics of mobilization, and composition of the graft. Br J Haematol. 1994, 87: 609-613. 10.1111/j.1365-2141.1994.tb08321.x.CrossRefPubMed
15.
go back to reference Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D, McGrath KM, Morstyn G, Fox RM: Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet. 1992, 339: 640-644. 10.1016/0140-6736(92)90795-5.CrossRefPubMed Sheridan WP, Begley CG, Juttner CA, Szer J, To LB, Maher D, McGrath KM, Morstyn G, Fox RM: Effect of peripheral-blood progenitor cells mobilised by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet. 1992, 339: 640-644. 10.1016/0140-6736(92)90795-5.CrossRefPubMed
16.
go back to reference Amgen I: Neulasta (Pegfilgrastim) (2008) and Neupogen (Filgrastim) (2007) prescribing information. 2008, CA, USA: Amgen, Thousand Oaks Amgen I: Neulasta (Pegfilgrastim) (2008) and Neupogen (Filgrastim) (2007) prescribing information. 2008, CA, USA: Amgen, Thousand Oaks
17.
go back to reference Greenwald RB: PEG drugs: an overview. J Control Release. 2001, 74: 159-171. 10.1016/S0168-3659(01)00331-5.CrossRefPubMed Greenwald RB: PEG drugs: an overview. J Control Release. 2001, 74: 159-171. 10.1016/S0168-3659(01)00331-5.CrossRefPubMed
18.
go back to reference Veronese FM, Mero A: The impact of PEGylation on biological therapies. BioDrugs. 2008, 22: 315-329. 10.2165/00063030-200822050-00004.CrossRefPubMed Veronese FM, Mero A: The impact of PEGylation on biological therapies. BioDrugs. 2008, 22: 315-329. 10.2165/00063030-200822050-00004.CrossRefPubMed
19.
go back to reference Morishita M, Leonard RC: Pegfilgrastim; a neutrophil mediated granulocyte colony stimulating factor-expanding uses in cancer chemotherapy. Expert Opin Biol Ther. 2008, 8: 993-1001. 10.1517/14712598.8.7.993.CrossRefPubMed Morishita M, Leonard RC: Pegfilgrastim; a neutrophil mediated granulocyte colony stimulating factor-expanding uses in cancer chemotherapy. Expert Opin Biol Ther. 2008, 8: 993-1001. 10.1517/14712598.8.7.993.CrossRefPubMed
20.
go back to reference Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L, Yang BB, Gardner S, Miller-Messana MA, Shoemaker D, Garst J, Schwab G: Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol. 2000, 18: 2522-2528.PubMed Johnston E, Crawford J, Blackwell S, Bjurstrom T, Lockbaum P, Roskos L, Yang BB, Gardner S, Miller-Messana MA, Shoemaker D, Garst J, Schwab G: Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol. 2000, 18: 2522-2528.PubMed
21.
go back to reference Yang BB, Lum PK, Hayashi MM, Roskos LK: Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004, 93: 1367-1373. 10.1002/jps.20024.CrossRefPubMed Yang BB, Lum PK, Hayashi MM, Roskos LK: Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004, 93: 1367-1373. 10.1002/jps.20024.CrossRefPubMed
22.
go back to reference Haag R, Kratz F: Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006, 45: 1198-1215. 10.1002/anie.200502113.CrossRefPubMed Haag R, Kratz F: Polymer therapeutics: concepts and applications. Angew Chem Int Ed Engl. 2006, 45: 1198-1215. 10.1002/anie.200502113.CrossRefPubMed
23.
go back to reference Veronese FM, Pasut G: PEGylation, successful approach to drug delivery. Drug Discov Today. 2005, 10: 1451-1458. 10.1016/S1359-6446(05)03575-0.CrossRefPubMed Veronese FM, Pasut G: PEGylation, successful approach to drug delivery. Drug Discov Today. 2005, 10: 1451-1458. 10.1016/S1359-6446(05)03575-0.CrossRefPubMed
24.
go back to reference Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G: Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug Chem. 2007, 18: 1824-1830. 10.1021/bc070123+.CrossRefPubMed Veronese FM, Mero A, Caboi F, Sergi M, Marongiu C, Pasut G: Site-specific pegylation of G-CSF by reversible denaturation. Bioconjug Chem. 2007, 18: 1824-1830. 10.1021/bc070123+.CrossRefPubMed
25.
go back to reference Gaberc-Porekar V, Zore I, Podobnik B, Menart V: Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel. 2008, 11: 242-250.PubMed Gaberc-Porekar V, Zore I, Podobnik B, Menart V: Obstacles and pitfalls in the PEGylation of therapeutic proteins. Curr Opin Drug Discov Devel. 2008, 11: 242-250.PubMed
26.
go back to reference Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS: Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther. 2006, 8: R12-10.1186/ar1861.PubMedCentralCrossRefPubMed Ganson NJ, Kelly SJ, Scarlett E, Sundy JS, Hershfield MS: Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase. Arthritis Res Ther. 2006, 8: R12-10.1186/ar1861.PubMedCentralCrossRefPubMed
27.
go back to reference Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G: Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007, 110: 103-111. 10.1002/cncr.22739.CrossRefPubMed Armstrong JK, Hempel G, Koling S, Chan LS, Fisher T, Meiselman HJ, Garratty G: Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer. 2007, 110: 103-111. 10.1002/cncr.22739.CrossRefPubMed
28.
go back to reference Richter AW, Akerblom E: Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol. 1984, 74: 36-39. 10.1159/000233512.CrossRefPubMed Richter AW, Akerblom E: Polyethylene glycol reactive antibodies in man: titer distribution in allergic patients treated with monomethoxy polyethylene glycol modified allergens or placebo, and in healthy blood donors. Int Arch Allergy Appl Immunol. 1984, 74: 36-39. 10.1159/000233512.CrossRefPubMed
29.
go back to reference Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P: Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012, 9: 1319-1323. 10.1517/17425247.2012.720969.CrossRefPubMed Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P: Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012, 9: 1319-1323. 10.1517/17425247.2012.720969.CrossRefPubMed
30.
go back to reference Mihara M, Koishihara Y, Fukui H, Yasukawa K, Ohsugi Y: Murine anti-human IL-6 monoclonal antibody prolongs the half-life in circulating blood and thus prolongs the bioactivity of human IL-6 in mice. Immunology. 1991, 74: 55-59.PubMedCentralPubMed Mihara M, Koishihara Y, Fukui H, Yasukawa K, Ohsugi Y: Murine anti-human IL-6 monoclonal antibody prolongs the half-life in circulating blood and thus prolongs the bioactivity of human IL-6 in mice. Immunology. 1991, 74: 55-59.PubMedCentralPubMed
31.
go back to reference Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR: Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol. 1993, 151: 1235-1244.PubMed Finkelman FD, Madden KB, Morris SC, Holmes JM, Boiani N, Katona IM, Maliszewski CR: Anti-cytokine antibodies as carrier proteins. Prolongation of in vivo effects of exogenous cytokines by injection of cytokine-anti-cytokine antibody complexes. J Immunol. 1993, 151: 1235-1244.PubMed
32.
go back to reference Mostbock S: Cytokine/Antibody complexes: an emerging class of immunostimulants. Curr Pharm Des. 2009, 15: 809-825. 10.2174/138161209787582174.CrossRefPubMed Mostbock S: Cytokine/Antibody complexes: an emerging class of immunostimulants. Curr Pharm Des. 2009, 15: 809-825. 10.2174/138161209787582174.CrossRefPubMed
33.
go back to reference Peleg-Shulman T, Roisman LC, Zupkovitz G, Schreiber G: Optimizing the binding affinity of a carrier protein: a case study on the interaction between soluble ifnar2 and interferon beta. J Biol Chem. 2004, 279: 18046-18053. 10.1074/jbc.M400033200.CrossRefPubMed Peleg-Shulman T, Roisman LC, Zupkovitz G, Schreiber G: Optimizing the binding affinity of a carrier protein: a case study on the interaction between soluble ifnar2 and interferon beta. J Biol Chem. 2004, 279: 18046-18053. 10.1074/jbc.M400033200.CrossRefPubMed
34.
go back to reference Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J: Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006, 311: 1924-1927. 10.1126/science.1122927.CrossRefPubMed Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J: Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science. 2006, 311: 1924-1927. 10.1126/science.1122927.CrossRefPubMed
35.
36.
go back to reference Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J: Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA. 2006, 103: 9166-9171. 10.1073/pnas.0600240103.PubMedCentralCrossRefPubMed Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J: Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc Natl Acad Sci USA. 2006, 103: 9166-9171. 10.1073/pnas.0600240103.PubMedCentralCrossRefPubMed
37.
go back to reference Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR: Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008, 180: 2099-2106.CrossRefPubMed Dubois S, Patel HJ, Zhang M, Waldmann TA, Muller JR: Preassociation of IL-15 with IL-15R alpha-IgG1-Fc enhances its activity on proliferation of NK and CD8+/CD44high T cells and its antitumor action. J Immunol. 2008, 180: 2099-2106.CrossRefPubMed
38.
go back to reference Kamimura D, Sawa Y, Sato M, Agung E, Hirano T, Murakami M: IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol. 2006, 177: 306-314.CrossRefPubMed Kamimura D, Sawa Y, Sato M, Agung E, Hirano T, Murakami M: IL-2 in vivo activities and antitumor efficacy enhanced by an anti-IL-2 mAb. J Immunol. 2006, 177: 306-314.CrossRefPubMed
39.
go back to reference Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW: IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood. 2008, 112: 3704-3712. 10.1182/blood-2008-06-160945.PubMedCentralCrossRefPubMed Rubinstein MP, Lind NA, Purton JF, Filippou P, Best JA, McGhee PA, Surh CD, Goldrath AW: IL-7 and IL-15 differentially regulate CD8+ T-cell subsets during contraction of the immune response. Blood. 2008, 112: 3704-3712. 10.1182/blood-2008-06-160945.PubMedCentralCrossRefPubMed
40.
go back to reference Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR: Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994, 84: 1737-1746.PubMed Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR: Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood. 1994, 84: 1737-1746.PubMed
41.
go back to reference Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC: Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996, 5: 491-501. 10.1016/S1074-7613(00)80504-X.CrossRefPubMed Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC: Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity. 1996, 5: 491-501. 10.1016/S1074-7613(00)80504-X.CrossRefPubMed
42.
go back to reference Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods. 1996, 197: 139-150. 10.1016/0022-1759(96)00138-X.CrossRefPubMed Lagasse E, Weissman IL: Flow cytometric identification of murine neutrophils and monocytes. J Immunol Methods. 1996, 197: 139-150. 10.1016/0022-1759(96)00138-X.CrossRefPubMed
43.
44.
go back to reference Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111: 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, De Baetselier P, Van Ginderachter JA: Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood. 2008, 111: 4233-4244. 10.1182/blood-2007-07-099226.CrossRefPubMed
45.
go back to reference Serizawa I, Amano K, Ishii H, Ichikawa T, Kusaka M, Taguchi T, Kiyokawa N, Fujimoto J: Long-term overexpression of human granulocyte colony-stimulating factor in transgenic mice: persistent neutrophilia with no increased mortality for more than one year. Cytokine. 2000, 12: 630-635. 10.1006/cyto.2000.0669.CrossRefPubMed Serizawa I, Amano K, Ishii H, Ichikawa T, Kusaka M, Taguchi T, Kiyokawa N, Fujimoto J: Long-term overexpression of human granulocyte colony-stimulating factor in transgenic mice: persistent neutrophilia with no increased mortality for more than one year. Cytokine. 2000, 12: 630-635. 10.1006/cyto.2000.0669.CrossRefPubMed
46.
go back to reference Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC: G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002, 17: 413-423. 10.1016/S1074-7613(02)00424-7.CrossRefPubMed Semerad CL, Liu F, Gregory AD, Stumpf K, Link DC: G-CSF is an essential regulator of neutrophil trafficking from the bone marrow to the blood. Immunity. 2002, 17: 413-423. 10.1016/S1074-7613(02)00424-7.CrossRefPubMed
47.
go back to reference Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedCentralCrossRefPubMed Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME: Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008, 8: 299-308. 10.1038/nrc2355.PubMedCentralCrossRefPubMed
48.
49.
go back to reference Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V: Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008, 222: 162-179. 10.1111/j.1600-065X.2008.00602.x.CrossRefPubMed Marigo I, Dolcetti L, Serafini P, Zanovello P, Bronte V: Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008, 222: 162-179. 10.1111/j.1600-065X.2008.00602.x.CrossRefPubMed
50.
go back to reference Franzke A: The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev. 2006, 17: 235-244. 10.1016/j.cytogfr.2006.05.002.CrossRefPubMed Franzke A: The role of G-CSF in adaptive immunity. Cytokine Growth Factor Rev. 2006, 17: 235-244. 10.1016/j.cytogfr.2006.05.002.CrossRefPubMed
51.
go back to reference Vasconcelos ZF, Dos Santos BM, Farache J, Palmeira TS, Areal RB, Cunha JM, Barcinski MA, Bonomo A: G-CSF-treated granulocytes inhibit acute graft-versus-host disease. Blood. 2006, 107: 2192-2199. 10.1182/blood-2005-08-3239.CrossRefPubMed Vasconcelos ZF, Dos Santos BM, Farache J, Palmeira TS, Areal RB, Cunha JM, Barcinski MA, Bonomo A: G-CSF-treated granulocytes inhibit acute graft-versus-host disease. Blood. 2006, 107: 2192-2199. 10.1182/blood-2005-08-3239.CrossRefPubMed
52.
go back to reference Sheridan WP, Morstyn G, Wolf M, Dodds A, Lusk J, Maher D, Layton JE, Green MD, Souza L, Fox RM: Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet. 1989, 2: 891-895.CrossRefPubMed Sheridan WP, Morstyn G, Wolf M, Dodds A, Lusk J, Maher D, Layton JE, Green MD, Souza L, Fox RM: Granulocyte colony-stimulating factor and neutrophil recovery after high-dose chemotherapy and autologous bone marrow transplantation. Lancet. 1989, 2: 891-895.CrossRefPubMed
53.
go back to reference Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, Montero AJ, Khafagy A, Cole DJ: Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol. 2009, 182: 2030-2040. 10.4049/jimmunol.0801829.PubMedCentralCrossRefPubMed Salem ML, Diaz-Montero CM, Al-Khami AA, El-Naggar SA, Naga O, Montero AJ, Khafagy A, Cole DJ: Recovery from cyclophosphamide-induced lymphopenia results in expansion of immature dendritic cells which can mediate enhanced prime-boost vaccination antitumor responses in vivo when stimulated with the TLR3 agonist poly(I:C). J Immunol. 2009, 182: 2030-2040. 10.4049/jimmunol.0801829.PubMedCentralCrossRefPubMed
54.
go back to reference Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC: The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol. 2006, 7: 475-481.CrossRefPubMed Hamilton SE, Wolkers MC, Schoenberger SP, Jameson SC: The generation of protective memory-like CD8+ T cells during homeostatic proliferation requires CD4+ T cells. Nat Immunol. 2006, 7: 475-481.CrossRefPubMed
55.
go back to reference Kim SK, Reed DS, Olson S, Schnell MJ, Rose JK, Morton PA, Lefrancois L: Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc Natl Acad Sci USA. 1998, 95: 10814-10819. 10.1073/pnas.95.18.10814.PubMedCentralCrossRefPubMed Kim SK, Reed DS, Olson S, Schnell MJ, Rose JK, Morton PA, Lefrancois L: Generation of mucosal cytotoxic T cells against soluble protein by tissue-specific environmental and costimulatory signals. Proc Natl Acad Sci USA. 1998, 95: 10814-10819. 10.1073/pnas.95.18.10814.PubMedCentralCrossRefPubMed
56.
go back to reference D'Cruz LM, Klein L: Development and function of agonist-induced CD25 + Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005, 6: 1152-1159. 10.1038/ni1264.CrossRefPubMed D'Cruz LM, Klein L: Development and function of agonist-induced CD25 + Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol. 2005, 6: 1152-1159. 10.1038/ni1264.CrossRefPubMed
57.
go back to reference Tough DF, Sprent J: Turnover of naive- and memory-phenotype T cells. J Exp Med. 1994, 179: 1127-1135. 10.1084/jem.179.4.1127.CrossRefPubMed Tough DF, Sprent J: Turnover of naive- and memory-phenotype T cells. J Exp Med. 1994, 179: 1127-1135. 10.1084/jem.179.4.1127.CrossRefPubMed
Metadata
Title
G-CSF/anti-G-CSF antibody complexes drive the potent recovery and expansion of CD11b+Gr-1+ myeloid cells without compromising CD8+ T cell immune responses
Authors
Mark P Rubinstein
Mohamed L Salem
Andrew L Doedens
Caitlin J Moore
Cody Chiuzan
Guillermo L Rivell
David J Cole
Ananda W Goldrath
Publication date
01-12-2013
Publisher
BioMed Central
Published in
Journal of Hematology & Oncology / Issue 1/2013
Electronic ISSN: 1756-8722
DOI
https://doi.org/10.1186/1756-8722-6-75

Other articles of this Issue 1/2013

Journal of Hematology & Oncology 1/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine