Skip to main content
Top
Published in: Journal of Neural Transmission 8/2010

01-08-2010 | Movement Disorders - Review Article

Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease

Authors: Kathleen A. Maguire-Zeiss, Howard J. Federoff

Published in: Journal of Neural Transmission | Issue 8/2010

Login to get access

Abstract

One common feature of neurodegenerative diseases is neuroinflammation. In the case of Parkinson’s disease (PD), neuroinflammation appears early and persists throughout the disease course. The principal cellular mediator of brain inflammation is the resident microglia which share many features with related hematopoietically derived macrophages. Microglia can become activated by misfolded proteins including the PD relevant example, α-synuclein, a presynaptic protein. When activated, microglia release pro-inflammatory diffusible mediators that promote dysfunction and contribute to the death of the PD vulnerable dopaminergic neurons in the midbrain. Recently, the orphan nuclear receptor Nurr1, well known as a critical determinant in dopaminergic neuron maturation, has been ascribed two new properties. First, it promotes the production and release of the neuropeptide vasoactive intestinal peptide that functions both to stimulate dopaminergic neuron survival and inhibit neuroinflammation. Second, Nurr1 suppresses the expression and release of pro-inflammatory cytokines in glial cells. Herein, we discuss these new findings in context of strategies to attenuate neuroinflammation in PD.
Literature
go back to reference Ahn TB, Kim SY et al (2008) alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 70(1):43–49CrossRefPubMed Ahn TB, Kim SY et al (2008) alpha-Synuclein gene duplication is present in sporadic Parkinson disease. Neurology 70(1):43–49CrossRefPubMed
go back to reference Alavian KN, Scholz C et al (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23(3):319–328CrossRefPubMed Alavian KN, Scholz C et al (2008) Transcriptional regulation of mesencephalic dopaminergic neurons: the full circle of life and death. Mov Disord 23(3):319–328CrossRefPubMed
go back to reference Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856CrossRefPubMed Bartels AL, Leenders KL (2007) Neuroinflammation in the pathophysiology of Parkinson’s disease: evidence from animal models to human in vivo studies with [11C]-PK11195 PET. Mov Disord 22(13):1852–1856CrossRefPubMed
go back to reference Bartels AL, Willemsen AT et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59CrossRefPubMed Bartels AL, Willemsen AT et al (2010) [11C]-PK11195 PET: quantification of neuroinflammation and a monitor of anti-inflammatory treatment in Parkinson’s disease? Parkinsonism Relat Disord 16(1):57–59CrossRefPubMed
go back to reference Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925CrossRefPubMed Braak H, Del Tredici K (2008) Invited article: nervous system pathology in sporadic Parkinson disease. Neurology 70(20):1916–1925CrossRefPubMed
go back to reference Brenneman DE, Glazner G et al (1998) VIP neurotrophism in the central nervous system: multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Ann N Y Acad Sci 865:207–212CrossRefPubMed Brenneman DE, Glazner G et al (1998) VIP neurotrophism in the central nervous system: multiple effectors and identification of a femtomolar-acting neuroprotective peptide. Ann N Y Acad Sci 865:207–212CrossRefPubMed
go back to reference Brooks DJ (2007) Assessment of Parkinson’s disease with imaging. Parkinsonism Relat Disord 13(Suppl 3):S268–S275CrossRefPubMed Brooks DJ (2007) Assessment of Parkinson’s disease with imaging. Parkinsonism Relat Disord 13(Suppl 3):S268–S275CrossRefPubMed
go back to reference Bucciantini M, Giannoni E et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511CrossRefPubMed Bucciantini M, Giannoni E et al (2002) Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416(6880):507–511CrossRefPubMed
go back to reference Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22–27CrossRefPubMed Chesselet MF (2008) In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol 209(1):22–27CrossRefPubMed
go back to reference Conway KA, Lee SJ et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97(2):571–576CrossRefPubMed Conway KA, Lee SJ et al (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97(2):571–576CrossRefPubMed
go back to reference Dejda A, Sokolowska P et al (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep 57(3):307–320PubMed Dejda A, Sokolowska P et al (2005) Neuroprotective potential of three neuropeptides PACAP, VIP and PHI. Pharmacol Rep 57(3):307–320PubMed
go back to reference Delgado M, Ganea D (2003a) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17(8):944–946PubMed Delgado M, Ganea D (2003a) Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson’s disease by blocking microglial activation. FASEB J 17(8):944–946PubMed
go back to reference Delgado M, Ganea D (2003b) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J 17(13):1922–1924PubMed Delgado M, Ganea D (2003b) Vasoactive intestinal peptide prevents activated microglia-induced neurodegeneration under inflammatory conditions: potential therapeutic role in brain trauma. FASEB J 17(13):1922–1924PubMed
go back to reference Delgado M, Jonakait GM et al (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39(2):148–161CrossRefPubMed Delgado M, Jonakait GM et al (2002) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit chemokine production in activated microglia. Glia 39(2):148–161CrossRefPubMed
go back to reference Delgado M, Leceta J et al (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73(1):155–164CrossRefPubMed Delgado M, Leceta J et al (2003) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibit the production of inflammatory mediators by activated microglia. J Leukoc Biol 73(1):155–164CrossRefPubMed
go back to reference Dorsey ER, Constantinescu R et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386CrossRefPubMed Dorsey ER, Constantinescu R et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386CrossRefPubMed
go back to reference Eberling JL, Jagust WJ et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983CrossRefPubMed Eberling JL, Jagust WJ et al (2008) Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 70(21):1980–1983CrossRefPubMed
go back to reference El-Agnaf OM, Nagala S et al (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310(1):157–168CrossRefPubMed El-Agnaf OM, Nagala S et al (2001) Non-fibrillar oligomeric species of the amyloid ABri peptide, implicated in familial British dementia, are more potent at inducing apoptotic cell death than protofibrils or mature fibrils. J Mol Biol 310(1):157–168CrossRefPubMed
go back to reference El-Agnaf OM, Walsh DM et al (2003) Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol 2(8):461–462CrossRefPubMed El-Agnaf OM, Walsh DM et al (2003) Soluble oligomers for the diagnosis of neurodegenerative diseases. Lancet Neurol 2(8):461–462CrossRefPubMed
go back to reference Federoff HJ (2009) Nur(R1)turing a notion on the etiopathogenesis of Parkinson’s disease. Neurotox Res 16(3):261–270CrossRefPubMed Federoff HJ (2009) Nur(R1)turing a notion on the etiopathogenesis of Parkinson’s disease. Neurotox Res 16(3):261–270CrossRefPubMed
go back to reference Gerhard A, Pavese N et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412CrossRefPubMed Gerhard A, Pavese N et al (2006) In vivo imaging of microglial activation with [11C](R)-PK11195 PET in idiopathic Parkinson’s disease. Neurobiol Dis 21(2):404–412CrossRefPubMed
go back to reference Grinberg LT, Rueb U et al (2010) Brainstem pathology and non-motor symptoms in PD. J Neurol Sci 289(1–2):81–88CrossRefPubMed Grinberg LT, Rueb U et al (2010) Brainstem pathology and non-motor symptoms in PD. J Neurol Sci 289(1–2):81–88CrossRefPubMed
go back to reference Imamura K, Hishikawa N et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526CrossRefPubMed Imamura K, Hishikawa N et al (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106(6):518–526CrossRefPubMed
go back to reference Jankovic J, Chen S et al (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138CrossRefPubMed Jankovic J, Chen S et al (2005) The role of Nurr1 in the development of dopaminergic neurons and Parkinson’s disease. Prog Neurobiol 77(1–2):128–138CrossRefPubMed
go back to reference Kaplitt MG, Feigin A et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105CrossRefPubMed Kaplitt MG, Feigin A et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson’s disease: an open label, phase I trial. Lancet 369(9579):2097–2105CrossRefPubMed
go back to reference Kaufmann H, Nahm K et al (2004) Autonomic failure as the initial presentation of Parkinson disease and dementia with Lewy bodies. Neurology 63(6):1093–1095PubMed Kaufmann H, Nahm K et al (2004) Autonomic failure as the initial presentation of Parkinson disease and dementia with Lewy bodies. Neurology 63(6):1093–1095PubMed
go back to reference Khoo TK, Burn DJ (2009) Non-motor symptoms may herald Parkinson’s disease. Practitioner 253(1721):19–24PubMed Khoo TK, Burn DJ (2009) Non-motor symptoms may herald Parkinson’s disease. Practitioner 253(1721):19–24PubMed
go back to reference Krogh K, Ostergaard K et al (2008) Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol Scand 117(1):60–64PubMed Krogh K, Ostergaard K et al (2008) Clinical aspects of bowel symptoms in Parkinson’s disease. Acta Neurol Scand 117(1):60–64PubMed
go back to reference Kruger R, Kuhn W et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108CrossRefPubMed Kruger R, Kuhn W et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108CrossRefPubMed
go back to reference Lapointe N, St-Hilaire M et al (2004) Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 18(6):717–719PubMed Lapointe N, St-Hilaire M et al (2004) Rotenone induces non-specific central nervous system and systemic toxicity. FASEB J 18(6):717–719PubMed
go back to reference Le W, Conneely OM et al (1999) Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73(5):2218–2221PubMed Le W, Conneely OM et al (1999) Reduced Nurr1 expression increases the vulnerability of mesencephalic dopamine neurons to MPTP-induced injury. J Neurochem 73(5):2218–2221PubMed
go back to reference Le WD, Xu P et al (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33(1):85–89CrossRefPubMed Le WD, Xu P et al (2003) Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 33(1):85–89CrossRefPubMed
go back to reference Le W, Pan T et al (2008) Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 273(1–2):29–33CrossRefPubMed Le W, Pan T et al (2008) Decreased NURR1 gene expression in patients with Parkinson’s disease. J Neurol Sci 273(1–2):29–33CrossRefPubMed
go back to reference Lee HJ, Suk JE et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272CrossRefPubMed Lee HJ, Suk JE et al (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285(12):9262–9272CrossRefPubMed
go back to reference Luo Y, Henricksen LA et al (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp Neurol 203(1):221–232CrossRefPubMed Luo Y, Henricksen LA et al (2007) VIP is a transcriptional target of Nurr1 in dopaminergic cells. Exp Neurol 203(1):221–232CrossRefPubMed
go back to reference Luo Y, Xing F et al (2008) Identification of a novel nurr1-interacting protein. J Neurosci 28(37):9277–9286CrossRefPubMed Luo Y, Xing F et al (2008) Identification of a novel nurr1-interacting protein. J Neurosci 28(37):9277–9286CrossRefPubMed
go back to reference Maguire-Zeiss KA (2008) alpha-Synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res 58:271–280CrossRefPubMed Maguire-Zeiss KA (2008) alpha-Synuclein: a therapeutic target for Parkinson’s disease? Pharmacol Res 58:271–280CrossRefPubMed
go back to reference Maguire-Zeiss KA, Federoff HJ (2009) Immune-directed gene therapeutic development for Alzheimer’s, prion, and Parkinson’s diseases. J Neuroimmune Pharmacol 4(3):298–308CrossRefPubMed Maguire-Zeiss KA, Federoff HJ (2009) Immune-directed gene therapeutic development for Alzheimer’s, prion, and Parkinson’s diseases. J Neuroimmune Pharmacol 4(3):298–308CrossRefPubMed
go back to reference Maguire-Zeiss KA, Su X et al (2008) Microglial activation in a mouse model of alpha-synuclein overexpression. Elsevier, San Diego Maguire-Zeiss KA, Su X et al (2008) Microglial activation in a mouse model of alpha-synuclein overexpression. Elsevier, San Diego
go back to reference Marks WJ Jr, Ostrem JL et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408CrossRefPubMed Marks WJ Jr, Ostrem JL et al (2008) Safety and tolerability of intraputaminal delivery of CERE-120 (adeno-associated virus serotype 2-neurturin) to patients with idiopathic Parkinson’s disease: an open-label, phase I trial. Lancet Neurol 7(5):400–408CrossRefPubMed
go back to reference McGeer PL, Itagaki S et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291PubMed McGeer PL, Itagaki S et al (1988) Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38(8):1285–1291PubMed
go back to reference Offen D, Sherki Y et al (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res 854(1–2):257–262CrossRefPubMed Offen D, Sherki Y et al (2000) Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson’s disease. Brain Res 854(1–2):257–262CrossRefPubMed
go back to reference Ouchi Y, Yoshikawa E et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175CrossRefPubMed Ouchi Y, Yoshikawa E et al (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57(2):168–175CrossRefPubMed
go back to reference Ouchi Y, Yagi S et al (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S200–S204CrossRefPubMed Ouchi Y, Yagi S et al (2009) Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 3):S200–S204CrossRefPubMed
go back to reference Perlmann T, Wallen-Mackenzie A (2004) Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res 318(1):45–52CrossRefPubMed Perlmann T, Wallen-Mackenzie A (2004) Nurr1, an orphan nuclear receptor with essential functions in developing dopamine cells. Cell Tissue Res 318(1):45–52CrossRefPubMed
go back to reference Poewe W (2007) Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 22(Suppl 17):S374–S378CrossRefPubMed Poewe W (2007) Dysautonomia and cognitive dysfunction in Parkinson’s disease. Mov Disord 22(Suppl 17):S374–S378CrossRefPubMed
go back to reference Polymeropoulos MH, Higgins JJ et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science 274(5290):1197–1199CrossRefPubMed Polymeropoulos MH, Higgins JJ et al (1996) Mapping of a gene for Parkinson’s disease to chromosome 4q21–q23. Science 274(5290):1197–1199CrossRefPubMed
go back to reference Saijo K, Winner B et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59CrossRefPubMed Saijo K, Winner B et al (2009) A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137(1):47–59CrossRefPubMed
go back to reference Satake W, Nakabayashi Y et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMed Satake W, Nakabayashi Y et al (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson’s disease. Nat Genet 41(12):1303–1307CrossRefPubMed
go back to reference Simon-Sanchez J, Schulte C et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312CrossRefPubMed Simon-Sanchez J, Schulte C et al (2009) Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nat Genet 41(12):1308–1312CrossRefPubMed
go back to reference Singleton AB, Farrer M et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841CrossRefPubMed Singleton AB, Farrer M et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841CrossRefPubMed
go back to reference Singleton A, Gwinn-Hardy K et al (2004) Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain 127(Pt 4):768–772CrossRefPubMed Singleton A, Gwinn-Hardy K et al (2004) Association between cardiac denervation and parkinsonism caused by alpha-synuclein gene triplication. Brain 127(Pt 4):768–772CrossRefPubMed
go back to reference Spillantini MG, Crowther RA et al (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473CrossRefPubMed Spillantini MG, Crowther RA et al (1998) alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proc Natl Acad Sci USA 95(11):6469–6473CrossRefPubMed
go back to reference Su X, Maguire-Zeiss KA et al (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701CrossRefPubMed Su X, Maguire-Zeiss KA et al (2008) Synuclein activates microglia in a model of Parkinson’s disease. Neurobiol Aging 29(11):1690–1701CrossRefPubMed
go back to reference Su X, Federoff HJ et al (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16(3):238–254CrossRefPubMed Su X, Federoff HJ et al (2009) Mutant alpha-synuclein overexpression mediates early proinflammatory activity. Neurotox Res 16(3):238–254CrossRefPubMed
go back to reference Thiruchelvam MJ, Powers JM et al (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19(4):845–854CrossRefPubMed Thiruchelvam MJ, Powers JM et al (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19(4):845–854CrossRefPubMed
go back to reference Tolosa E, Compta Y et al (2007) The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl):S2–S7CrossRefPubMed Tolosa E, Compta Y et al (2007) The premotor phase of Parkinson’s disease. Parkinsonism Relat Disord 13(Suppl):S2–S7CrossRefPubMed
go back to reference Wang Z, Benoit G et al (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560CrossRefPubMed Wang Z, Benoit G et al (2003) Structure and function of Nurr1 identifies a class of ligand-independent nuclear receptors. Nature 423(6939):555–560CrossRefPubMed
go back to reference Zetterstrom RH, Solomin L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250CrossRefPubMed Zetterstrom RH, Solomin L et al (1997) Dopamine neuron agenesis in Nurr1-deficient mice. Science 276(5310):248–250CrossRefPubMed
go back to reference Zhang W, Wang T et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542CrossRefPubMed Zhang W, Wang T et al (2005) Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 19(6):533–542CrossRefPubMed
go back to reference Zheng K, Heydari B et al (2003) A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease. Arch Neurol 60(5):722–725CrossRefPubMed Zheng K, Heydari B et al (2003) A common NURR1 polymorphism associated with Parkinson disease and diffuse Lewy body disease. Arch Neurol 60(5):722–725CrossRefPubMed
Metadata
Title
Future directions for immune modulation in neurodegenerative disorders: focus on Parkinson’s disease
Authors
Kathleen A. Maguire-Zeiss
Howard J. Federoff
Publication date
01-08-2010
Publisher
Springer Vienna
Published in
Journal of Neural Transmission / Issue 8/2010
Print ISSN: 0300-9564
Electronic ISSN: 1435-1463
DOI
https://doi.org/10.1007/s00702-010-0431-6

Other articles of this Issue 8/2010

Journal of Neural Transmission 8/2010 Go to the issue

Movement Disorders-Review Article

Inflammation processes in perinatal brain damage

Basic Neurosciences, Genetics and Immunology - Review article

Neuroinflammatory processes in Alzheimer’s disease

Basic Neurosciences, Genetics and Immunology - Review Article

Macrophages in Alzheimer’s disease: the blood-borne identity

Editorial

Editorial