Skip to main content
Top
Published in: Cancer Chemotherapy and Pharmacology 5/2011

01-11-2011 | Original Article

Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells

Authors: Ying-Wei Li, Guo-Yuan Zhu, Xiao-Ling Shen, Jian-Hong Chu, Zhi-Ling Yu, Wang-Fun Fong

Published in: Cancer Chemotherapy and Pharmacology | Issue 5/2011

Login to get access

Abstract

Purpose

Overexpression of EGFR and HER2 is seen in breast cancers and results in poor prognosis and decreased patient survival. Clinically, EGFR and HER2 are effective therapeutic targets. The objective of this study is to investigate the in vitro effects of furanodienone, an active chemical component isolated from Rhizoma Curcumae, on the activation of EGFR/HER2 signaling, cell cycle, and apoptosis in HER2-overexpressing BT474 and SKBR3 cells.

Methods

Cell growth was assessed by SRB protein assay. Cell cycle analysis was carried out by flow cytometry, and apoptosis was observed by Annexin V and DAPI staining. Effects of furanodienone on the activation of EGFR/HER2 signaling-related proteins were analyzed by western blotting.

Results

Furanodienone inhibited cell growth in BT474 and SKBR3 cells. Furanodienone caused G1 arrest in BT474 cells and induced apoptosis in SKBR3 cells. Furanodienone interfered with EGFR/HER2 signaling in treated cells as shown by decreases in phosphorylated EGFR, HER2, Akt, Gsk3β and an increase in p27kip1 protein. Accordingly, furanodienone inhibited EGF-induced phosphorylation of EGFR, HER2, Akt, and Gsk3β. EGFR-specific siRNA knockdown did not affect the cell growth inhibitory effect of furanodienone. On the contrary, specific siRNA knockdown of HER2 increased cellular resistance to furanodienone toxicity. In HER-2-deficient MDA-MB-231 cells, the transfection and expression of HER2 increased the sensitivity of cells to furanodienone toxicity.

Conclusion

Furanodienone inhibited EGFR/HER2 signaling pathway in BT474 and SKBR3 cells. More importantly, the effect of furanodienone was specifically dependent on HER2, but not EGFR, expression.
Appendix
Available only for authorised users
Literature
1.
go back to reference Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67(14):2045–2075PubMedCrossRef Press MF, Lenz HJ (2007) EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 67(14):2045–2075PubMedCrossRef
2.
go back to reference Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11(4):689–708PubMedCrossRef Harari PM (2004) Epidermal growth factor receptor inhibition strategies in oncology. Endocr Relat Cancer 11(4):689–708PubMedCrossRef
3.
go back to reference Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187PubMedCrossRef Krause DS, Van Etten RA (2005) Tyrosine kinases as targets for cancer therapy. N Engl J Med 353(2):172–187PubMedCrossRef
4.
go back to reference Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31PubMedCrossRef Prenzel N, Fischer OM, Streit S, Hart S, Ullrich A (2001) The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr Relat Cancer 8(1):11–31PubMedCrossRef
5.
go back to reference Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10):2013–2023PubMedCrossRef Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS (2007) Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 19(10):2013–2023PubMedCrossRef
6.
go back to reference Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167PubMedCrossRef Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19(13):3159–3167PubMedCrossRef
7.
go back to reference Bazley LA, Gullick WJ (2005) The epidermal growth factor receptor family. Endocr Relat Cancer 12(Suppl 1):S17–S27PubMedCrossRef Bazley LA, Gullick WJ (2005) The epidermal growth factor receptor family. Endocr Relat Cancer 12(Suppl 1):S17–S27PubMedCrossRef
8.
go back to reference Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8PubMedCrossRef Yarden Y (2001) The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur J Cancer 37(Suppl 4):S3–S8PubMedCrossRef
9.
go back to reference Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRef Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer statistics, 2008. CA Cancer J Clin 58(2):71–96PubMedCrossRef
10.
go back to reference Nunes RA, Harris LN (2002) The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin Breast Cancer 3(2):125–135 (discussion 136–127) Nunes RA, Harris LN (2002) The HER2 extracellular domain as a prognostic and predictive factor in breast cancer. Clin Breast Cancer 3(2):125–135 (discussion 136–127)
11.
go back to reference Abd El-Rehim DM, Pinder SE, Paish CE, Bell JA, Rampaul RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542PubMedCrossRef Abd El-Rehim DM, Pinder SE, Paish CE, Bell JA, Rampaul RS, Blamey RW, Robertson JF, Nicholson RI, Ellis IO (2004) Expression and co-expression of the members of the epidermal growth factor receptor (EGFR) family in invasive breast carcinoma. Br J Cancer 91(8):1532–1542PubMedCrossRef
12.
go back to reference Hudelist G, Singer CF, Manavi M, Pischinger K, Kubista E, Czerwenka K (2003) Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 80(3):353–361PubMedCrossRef Hudelist G, Singer CF, Manavi M, Pischinger K, Kubista E, Czerwenka K (2003) Co-expression of ErbB-family members in human breast cancer: Her-2/neu is the preferred dimerization candidate in nodal-positive tumors. Breast Cancer Res Treat 80(3):353–361PubMedCrossRef
13.
go back to reference Bernard-Marty C, Lebrun F, Awada A, Piccart MJ (2006) Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 66(12):1577–1591PubMedCrossRef Bernard-Marty C, Lebrun F, Awada A, Piccart MJ (2006) Monoclonal antibody-based targeted therapy in breast cancer: current status and future directions. Drugs 66(12):1577–1591PubMedCrossRef
14.
go back to reference Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S, Ramon y Cajal S, Arribas J, Baselga J (2009) Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28(6):803–814PubMedCrossRef Scaltriti M, Verma C, Guzman M, Jimenez J, Parra JL, Pedersen K, Smith DJ, Landolfi S, Ramon y Cajal S, Arribas J, Baselga J (2009) Lapatinib, a HER2 tyrosine kinase inhibitor, induces stabilization and accumulation of HER2 and potentiates trastuzumab-dependent cell cytotoxicity. Oncogene 28(6):803–814PubMedCrossRef
15.
16.
go back to reference Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C (2004) HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 90(12):2344–2348PubMed Carlsson J, Nordgren H, Sjostrom J, Wester K, Villman K, Bengtsson NO, Ostenstad B, Lundqvist H, Blomqvist C (2004) HER2 expression in breast cancer primary tumours and corresponding metastases. Original data and literature review. Br J Cancer 90(12):2344–2348PubMed
17.
go back to reference Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578PubMedCrossRef Menard S, Pupa SM, Campiglio M, Tagliabue E (2003) Biologic and therapeutic role of HER2 in cancer. Oncogene 22(42):6570–6578PubMedCrossRef
18.
19.
go back to reference Yip AY, Tse LA, Ong EY, Chow LW (2010) Survival benefits from lapatinib therapy in women with HER2-overexpressing breast cancer: a systematic review. Anticancer Drugs 21(5):487–493PubMedCrossRef Yip AY, Tse LA, Ong EY, Chow LW (2010) Survival benefits from lapatinib therapy in women with HER2-overexpressing breast cancer: a systematic review. Anticancer Drugs 21(5):487–493PubMedCrossRef
20.
go back to reference Reid A, Vidal L, Shaw H, de Bono J (2007) Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 43(3):481–489PubMedCrossRef Reid A, Vidal L, Shaw H, de Bono J (2007) Dual inhibition of ErbB1 (EGFR/HER1) and ErbB2 (HER2/neu). Eur J Cancer 43(3):481–489PubMedCrossRef
22.
go back to reference Ma E, Wang X, Li Y, Sun X, Tai W, Li T, Guo T (2008) Induction of apoptosis by furanodiene in HL60 leukemia cells through activation of TNFR1 signaling pathway. Cancer Lett 271(1):158–166PubMedCrossRef Ma E, Wang X, Li Y, Sun X, Tai W, Li T, Guo T (2008) Induction of apoptosis by furanodiene in HL60 leukemia cells through activation of TNFR1 signaling pathway. Cancer Lett 271(1):158–166PubMedCrossRef
23.
go back to reference Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20(7):680–685PubMedCrossRef Makabe H, Maru N, Kuwabara A, Kamo T, Hirota M (2006) Anti-inflammatory sesquiterpenes from Curcuma zedoaria. Nat Prod Res 20(7):680–685PubMedCrossRef
24.
go back to reference Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull (Tokyo) 56(7):936–940CrossRef Tanaka K, Kuba Y, Ina A, Watanabe H, Komatsu K (2008) Prediction of cyclooxygenase inhibitory activity of curcuma rhizome from chromatograms by multivariate analysis. Chem Pharm Bull (Tokyo) 56(7):936–940CrossRef
25.
go back to reference Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L (2007) Enhanced antitumor effect of combined triptolide and ionizing radiation. Clin Cancer Res 13(16):4891–4899PubMedCrossRef Wang W, Yang S, Su Y, Xiao Z, Wang C, Li X, Lin L, Fenton BM, Paoni SF, Ding I, Keng P, Okunieff P, Zhang L (2007) Enhanced antitumor effect of combined triptolide and ionizing radiation. Clin Cancer Res 13(16):4891–4899PubMedCrossRef
26.
go back to reference Ricote M, Garcia-Tunon I, Fraile B, Fernandez C, Aller P, Paniagua R, Royuela M (2006) P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis 11(11):1969–1975PubMedCrossRef Ricote M, Garcia-Tunon I, Fraile B, Fernandez C, Aller P, Paniagua R, Royuela M (2006) P38 MAPK protects against TNF-alpha-provoked apoptosis in LNCaP prostatic cancer cells. Apoptosis 11(11):1969–1975PubMedCrossRef
27.
go back to reference Tse AK, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, Fong WF (2007) Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 44(10):2647–2658PubMedCrossRef Tse AK, Wan CK, Zhu GY, Shen XL, Cheung HY, Yang M, Fong WF (2007) Magnolol suppresses NF-kappaB activation and NF-kappaB regulated gene expression through inhibition of IkappaB kinase activation. Mol Immunol 44(10):2647–2658PubMedCrossRef
28.
go back to reference Zhang D, Pal A, Bornmann WG, Yamasaki F, Esteva FJ, Hortobagyi GN, Bartholomeusz C, Ueno NT (2008) Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther 7(7):1846–1850PubMedCrossRef Zhang D, Pal A, Bornmann WG, Yamasaki F, Esteva FJ, Hortobagyi GN, Bartholomeusz C, Ueno NT (2008) Activity of lapatinib is independent of EGFR expression level in HER2-overexpressing breast cancer cells. Mol Cancer Ther 7(7):1846–1850PubMedCrossRef
29.
go back to reference Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469PubMedCrossRef Li YM, Pan Y, Wei Y, Cheng X, Zhou BP, Tan M, Zhou X, Xia W, Hortobagyi GN, Yu D, Hung MC (2004) Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 6(5):459–469PubMedCrossRef
30.
go back to reference Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X (2009) Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 34(1):25–32PubMed Patel D, Bassi R, Hooper A, Prewett M, Hicklin DJ, Kang X (2009) Anti-epidermal growth factor receptor monoclonal antibody cetuximab inhibits EGFR/HER-2 heterodimerization and activation. Int J Oncol 34(1):25–32PubMed
31.
go back to reference Chiosis G, Keeton AB (2009) Assay for isolation of inhibitors of her2-kinase expression. Methods Mol Biol 486:139–149PubMedCrossRef Chiosis G, Keeton AB (2009) Assay for isolation of inhibitors of her2-kinase expression. Methods Mol Biol 486:139–149PubMedCrossRef
Metadata
Title
Furanodienone induces cell cycle arrest and apoptosis by suppressing EGFR/HER2 signaling in HER2-overexpressing human breast cancer cells
Authors
Ying-Wei Li
Guo-Yuan Zhu
Xiao-Ling Shen
Jian-Hong Chu
Zhi-Ling Yu
Wang-Fun Fong
Publication date
01-11-2011
Publisher
Springer-Verlag
Published in
Cancer Chemotherapy and Pharmacology / Issue 5/2011
Print ISSN: 0344-5704
Electronic ISSN: 1432-0843
DOI
https://doi.org/10.1007/s00280-011-1624-x

Other articles of this Issue 5/2011

Cancer Chemotherapy and Pharmacology 5/2011 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine