Skip to main content
Top
Published in: Endocrine 2/2014

01-06-2014 | Original Article

Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion

Authors: Wen Huang, Jin Xu, Fei Jing, Wen-Bin Chen, Ling Gao, Hai-Tao Yuan, Jia-Jun Zhao

Published in: Endocrine | Issue 2/2014

Login to get access

Abstract

Elevated thyrotropin (TSH) and hypercholesterolemia commonly coexist in patients with subclinical hypothyroidism, which can cause and aggravate heart disease. However, it is unclear whether TSH has a direct effect on cardiac function. To determine the expression of the thyrotropin receptor (TSHR) and the effects of TSH on ventricular function, we analyzed the ventricular tissues and thyroid glands from normal rats and mice and the H9c2 cardiomyocyte cell line. The results revealed that TSHR was expressed at the transcriptional and protein levels by PCR, immunoblotting, immunohistochemistry and immunofluorescence. The mRNA levels of β-MHC and the expression of pCREB and HMGCR in the ventricle were significantly lower in Tshr / mice than in wild-type (WT) mice (p < 0.05), but serum NT-proBNP levels were similar between WT and Tshr / mice. After synchronization, H9c2 cells were stimulated with several concentrations of TSH for various time periods. TSH up-regulated β-MHC mRNA expression in H9c2 cells. Cyclic adenosine monophosphate (cAMP) production and downstream signaling, such as pCREB and HMGCR expression and NT-proBNP secretion, increased in dose- and time-dependent manners. The TSH-stimulated effects were suppressed by an adenylyl cyclase inhibitor, a protein kinase A (PKA) inhibitor and HMGCR inhibitors (all p < 0.05). The data indicate functional TSHR is expressed in ventricular myocytes and mediates TSH-induced BNP secretion and HMGCR up-regulation through the cAMP/PKA/pCREB signaling pathway. Our findings suggest a potentially novel pathophysiological role of TSH in heart failure-associated hypothyroidism.
Literature
1.
go back to reference W.I. Khalife, Y.D. Tang, J.A. Kuzman, T.A. Thomas, B.E. Anderson, S. Said, P. Tille, E.H. Schlenker, A.M. Gerdes, Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am. J. Physiol. 289(6), H2409–H2415 (2005). doi:10.1152/ajpheart.00483.2005 W.I. Khalife, Y.D. Tang, J.A. Kuzman, T.A. Thomas, B.E. Anderson, S. Said, P. Tille, E.H. Schlenker, A.M. Gerdes, Treatment of subclinical hypothyroidism reverses ischemia and prevents myocyte loss and progressive LV dysfunction in hamsters with dilated cardiomyopathy. Am. J. Physiol. 289(6), H2409–H2415 (2005). doi:10.​1152/​ajpheart.​00483.​2005
2.
go back to reference N. Rodondi, D.C. Bauer, A.R. Cappola, J. Cornuz, J. Robbins, L.P. Fried, P.W. Ladenson, E. Vittinghoff, J.S. Gottdiener, A.B. Newman, Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J. Am. Coll. Cardiol. 52(14), 1152–1159 (2008). doi:10.1016/j.jacc.2008.07.009 PubMedCentralPubMedCrossRef N. Rodondi, D.C. Bauer, A.R. Cappola, J. Cornuz, J. Robbins, L.P. Fried, P.W. Ladenson, E. Vittinghoff, J.S. Gottdiener, A.B. Newman, Subclinical thyroid dysfunction, cardiac function, and the risk of heart failure. The Cardiovascular Health study. J. Am. Coll. Cardiol. 52(14), 1152–1159 (2008). doi:10.​1016/​j.​jacc.​2008.​07.​009 PubMedCentralPubMedCrossRef
3.
go back to reference N. Rodondi, A.B. Newman, E. Vittinghoff, N. de Rekeneire, S. Satterfield, T.B. Harris, D.C. Bauer, Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165(21), 2460–2466 (2005). doi:10.1001/archinte.165.21.2460 PubMedCrossRef N. Rodondi, A.B. Newman, E. Vittinghoff, N. de Rekeneire, S. Satterfield, T.B. Harris, D.C. Bauer, Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165(21), 2460–2466 (2005). doi:10.​1001/​archinte.​165.​21.​2460 PubMedCrossRef
4.
go back to reference M.D. Danese, P.W. Ladenson, C.L. Meinert, N.R. Powe, Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J. Clin. Endocrinol. Metab. 85(9), 2993–3001 (2000)PubMed M.D. Danese, P.W. Ladenson, C.L. Meinert, N.R. Powe, Clinical review 115: effect of thyroxine therapy on serum lipoproteins in patients with mild thyroid failure: a quantitative review of the literature. J. Clin. Endocrinol. Metab. 85(9), 2993–3001 (2000)PubMed
5.
go back to reference A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 132(4), 270–278 (2000)PubMedCrossRef A.E. Hak, H.A. Pols, T.J. Visser, H.A. Drexhage, A. Hofman, J.C. Witteman, Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 132(4), 270–278 (2000)PubMedCrossRef
6.
go back to reference J.P. Walsh, A.P. Bremner, M.K. Bulsara, P. O’Leary, P.J. Leedman, P. Feddema, V. Michelangeli, Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165(21), 2467–2472 (2005). doi:10.1001/archinte.165.21.2467. 165/21/2467 [pii]PubMedCrossRef J.P. Walsh, A.P. Bremner, M.K. Bulsara, P. O’Leary, P.J. Leedman, P. Feddema, V. Michelangeli, Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165(21), 2467–2472 (2005). doi:10.​1001/​archinte.​165.​21.​2467. 165/21/2467 [pii]PubMedCrossRef
7.
go back to reference C. Xu, X. Yang, W. Liu, H. Yuan, C. Yu, L. Gao, J. Zhao, Thyroid stimulating hormone, independent of thyroid hormone, can elevate the serum total cholesterol level in patients with coronary heart disease: a cross-sectional design. Nutr. Metab. 9(1), 44 (2012). doi:10.1186/1743-7075-9-44 CrossRef C. Xu, X. Yang, W. Liu, H. Yuan, C. Yu, L. Gao, J. Zhao, Thyroid stimulating hormone, independent of thyroid hormone, can elevate the serum total cholesterol level in patients with coronary heart disease: a cross-sectional design. Nutr. Metab. 9(1), 44 (2012). doi:10.​1186/​1743-7075-9-44 CrossRef
8.
go back to reference F. Wang, Y. Tan, C. Wang, X. Zhang, Y. Zhao, X. Song, B. Zhang, Q. Guan, J. Xu, J. Zhang, D. Zhang, H. Lin, C. Yu, J. Zhao, Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J. Clin. Endocrinol. Metab. 97(8), 2724–2731 (2012). doi:10.1210/jc.2012-1133 PubMedCrossRef F. Wang, Y. Tan, C. Wang, X. Zhang, Y. Zhao, X. Song, B. Zhang, Q. Guan, J. Xu, J. Zhang, D. Zhang, H. Lin, C. Yu, J. Zhao, Thyroid-stimulating hormone levels within the reference range are associated with serum lipid profiles independent of thyroid hormones. J. Clin. Endocrinol. Metab. 97(8), 2724–2731 (2012). doi:10.​1210/​jc.​2012-1133 PubMedCrossRef
11.
go back to reference M. Takemoto, J.K. Liao, Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21(11), 1712–1719 (2001)PubMedCrossRef M. Takemoto, J.K. Liao, Pleiotropic effects of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors. Arterioscler. Thromb. Vasc. Biol. 21(11), 1712–1719 (2001)PubMedCrossRef
12.
go back to reference K. Kato, A.D. Cox, M.M. Hisaka, S.M. Graham, J.E. Buss, C.J. Der, Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA 89(14), 6403–6407 (1992)PubMedCentralPubMedCrossRef K. Kato, A.D. Cox, M.M. Hisaka, S.M. Graham, J.E. Buss, C.J. Der, Isoprenoid addition to Ras protein is the critical modification for its membrane association and transforming activity. Proc. Natl. Acad. Sci. USA 89(14), 6403–6407 (1992)PubMedCentralPubMedCrossRef
13.
go back to reference S.J. Fuller, J. Gillespie-Brown, P.H. Sugden, Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J. Biol. Chem. 273(29), 18146–18152 (1998)PubMedCrossRef S.J. Fuller, J. Gillespie-Brown, P.H. Sugden, Oncogenic src, raf, and ras stimulate a hypertrophic pattern of gene expression and increase cell size in neonatal rat ventricular myocytes. J. Biol. Chem. 273(29), 18146–18152 (1998)PubMedCrossRef
14.
go back to reference P. Mathiyalagan, L. Chang, X.J. Du, A. El-Osta, Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 9(3), 612–617 (2010)PubMedCrossRef P. Mathiyalagan, L. Chang, X.J. Du, A. El-Osta, Cardiac ventricular chambers are epigenetically distinguishable. Cell Cycle 9(3), 612–617 (2010)PubMedCrossRef
17.
go back to reference T. Aoyagi, F. Nakamura, T. Tomaru, T. Toyo-Oka, Beneficial effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac function in ischemic and nonischemic heart failure. Intern. Heart J. 49(1), 49–58 (2008)CrossRef T. Aoyagi, F. Nakamura, T. Tomaru, T. Toyo-Oka, Beneficial effects of pitavastatin, a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor, on cardiac function in ischemic and nonischemic heart failure. Intern. Heart J. 49(1), 49–58 (2008)CrossRef
19.
go back to reference D. Grieco, Z.H. Beg, A. Romano, M. Bifulco, S.M. Aloj, Cell cycle progression and 3-hydroxy-3-methylglutaryl coenzyme A reductase are regulated by thyrotropin in FRTL-5 rat thyroid cells. J. Biol. Chem. 265(31), 19343–19350 (1990)PubMed D. Grieco, Z.H. Beg, A. Romano, M. Bifulco, S.M. Aloj, Cell cycle progression and 3-hydroxy-3-methylglutaryl coenzyme A reductase are regulated by thyrotropin in FRTL-5 rat thyroid cells. J. Biol. Chem. 265(31), 19343–19350 (1990)PubMed
20.
go back to reference L. Tian, Y. Song, M. Xing, W. Zhang, G. Ning, X. Li, C. Yu, C. Qin, J. Liu, X. Tian, X. Sun, R. Fu, L. Zhang, X. Zhang, Y. Lu, J. Zou, L. Wang, Q. Guan, L. Gao, J. Zhao, A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 52(4), 1401–1409 (2010). doi:10.1002/hep.23800 PubMedCrossRef L. Tian, Y. Song, M. Xing, W. Zhang, G. Ning, X. Li, C. Yu, C. Qin, J. Liu, X. Tian, X. Sun, R. Fu, L. Zhang, X. Zhang, Y. Lu, J. Zou, L. Wang, Q. Guan, L. Gao, J. Zhao, A novel role for thyroid-stimulating hormone: up-regulation of hepatic 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression through the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-responsive element binding protein pathway. Hepatology 52(4), 1401–1409 (2010). doi:10.​1002/​hep.​23800 PubMedCrossRef
21.
go back to reference R. Baliram, L. Sun, J. Cao, J. Li, R. Latif, A.K. Huber, T. Yuen, H.C. Blair, M. Zaidi, T.F. Davies, Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 122(10), 3737–3741 (2012). doi:10.1172/JCI63948 PubMedCentralPubMedCrossRef R. Baliram, L. Sun, J. Cao, J. Li, R. Latif, A.K. Huber, T. Yuen, H.C. Blair, M. Zaidi, T.F. Davies, Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 122(10), 3737–3741 (2012). doi:10.​1172/​JCI63948 PubMedCentralPubMedCrossRef
22.
go back to reference M. Ren, Q. Guan, X. Zhong, B. Gong, Y. Sun, W. Xin, J. Guo, H. Wang, L. Gao, J. Zhao, Phosphatidylinositol 3-kinase/nuclear factor-kappa B signaling pathway is involved in the regulation of IGF-I on Fas-associated death domain-like interleukin-1-converting enzyme-inhibitory protein expression in cultured FRTL thyroid cells. J. Mol. Endocrinol. 38(6), 619–625 (2007). doi:10.1677/JME-07-0020 PubMedCrossRef M. Ren, Q. Guan, X. Zhong, B. Gong, Y. Sun, W. Xin, J. Guo, H. Wang, L. Gao, J. Zhao, Phosphatidylinositol 3-kinase/nuclear factor-kappa B signaling pathway is involved in the regulation of IGF-I on Fas-associated death domain-like interleukin-1-converting enzyme-inhibitory protein expression in cultured FRTL thyroid cells. J. Mol. Endocrinol. 38(6), 619–625 (2007). doi:10.​1677/​JME-07-0020 PubMedCrossRef
24.
go back to reference R. Paschke, V. Geenen, Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J. Mol. Med. 73(11), 577–580 (1995)PubMedCrossRef R. Paschke, V. Geenen, Messenger RNA expression for a TSH receptor variant in the thymus of a two-year-old child. J. Mol. Med. 73(11), 577–580 (1995)PubMedCrossRef
25.
go back to reference T. Endo, K. Ohta, K. Haraguchi, T. Onaya, Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J. Biol. Chem. 270(18), 10833–10837 (1995)PubMedCrossRef T. Endo, K. Ohta, K. Haraguchi, T. Onaya, Cloning and functional expression of a thyrotropin receptor cDNA from rat fat cells. J. Biol. Chem. 270(18), 10833–10837 (1995)PubMedCrossRef
26.
go back to reference M. Mengistu, Y.G. Lukes, E.V. Nagy, H.B. Burch, F.E. Carr, S. Lahiri, K.D. Burman, TSH receptor gene expression in retroocular fibroblasts. J. Endocrinol. Invest. 17(6), 437–441 (1994)PubMed M. Mengistu, Y.G. Lukes, E.V. Nagy, H.B. Burch, F.E. Carr, S. Lahiri, K.D. Burman, TSH receptor gene expression in retroocular fibroblasts. J. Endocrinol. Invest. 17(6), 437–441 (1994)PubMed
27.
go back to reference V. Drvota, A. Janson, C. Norman, C. Sylven, J. Haggblad, M. Bronnegard, C. Marcus, Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem. Biophys. Res. Commun. 211(2), 426–431 (1995). doi:10.1006/bbrc.1995.1831 PubMedCrossRef V. Drvota, A. Janson, C. Norman, C. Sylven, J. Haggblad, M. Bronnegard, C. Marcus, Evidence for the presence of functional thyrotropin receptor in cardiac muscle. Biochem. Biophys. Res. Commun. 211(2), 426–431 (1995). doi:10.​1006/​bbrc.​1995.​1831 PubMedCrossRef
28.
go back to reference D.F. Sellitti, R. Hill, S.Q. Doi, T. Akamizu, J. Czaja, S. Tao, H. Koshiyama, Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 7(4), 641–646 (1997)PubMedCrossRef D.F. Sellitti, R. Hill, S.Q. Doi, T. Akamizu, J. Czaja, S. Tao, H. Koshiyama, Differential expression of thyrotropin receptor mRNA in the porcine heart. Thyroid 7(4), 641–646 (1997)PubMedCrossRef
29.
go back to reference B.E. Busuttil, A.G. Frauman, Extrathyroidal manifestations of Graves’ disease: the thyrotropin receptor is expressed in extraocular, but not cardiac, muscle tissues. J. Clin. Endocrinol. Metab. 86(5), 2315–2319 (2001)PubMed B.E. Busuttil, A.G. Frauman, Extrathyroidal manifestations of Graves’ disease: the thyrotropin receptor is expressed in extraocular, but not cardiac, muscle tissues. J. Clin. Endocrinol. Metab. 86(5), 2315–2319 (2001)PubMed
30.
33.
go back to reference W.J. Remme, K. Swedberg, Task force for the, D., treatment of chronic heart failure, E.S.o.C.: guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 22(17), 1527–1560 (2001). doi:10.1053/euhj.2001.2783 PubMedCrossRef W.J. Remme, K. Swedberg, Task force for the, D., treatment of chronic heart failure, E.S.o.C.: guidelines for the diagnosis and treatment of chronic heart failure. Eur. Heart J. 22(17), 1527–1560 (2001). doi:10.​1053/​euhj.​2001.​2783 PubMedCrossRef
34.
go back to reference P.F. Downie, S. Talwar, I.B. Squire, J.E. Davies, D.B. Barnett, L.L. Ng, Assessment of the stability of N-terminal pro-brain natriuretic peptide in vitro: implications for assessment of left ventricular dysfunction. Clin. Sci. 97(3), 255–258 (1999)PubMedCrossRef P.F. Downie, S. Talwar, I.B. Squire, J.E. Davies, D.B. Barnett, L.L. Ng, Assessment of the stability of N-terminal pro-brain natriuretic peptide in vitro: implications for assessment of left ventricular dysfunction. Clin. Sci. 97(3), 255–258 (1999)PubMedCrossRef
35.
go back to reference S.J. Watkins, G.M. Borthwick, H.M. Arthur, The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In vitro cellular & developmental biology. Animal 47(2), 125–131 (2011). doi:10.1007/s11626-010-9368-1 S.J. Watkins, G.M. Borthwick, H.M. Arthur, The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In vitro cellular & developmental biology. Animal 47(2), 125–131 (2011). doi:10.​1007/​s11626-010-9368-1
36.
go back to reference T. Kimura, A. Van Keymeulen, J. Golstein, A. Fusco, J.E. Dumont, P.P. Roger, Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22(5), 631–656 (2001)PubMedCrossRef T. Kimura, A. Van Keymeulen, J. Golstein, A. Fusco, J.E. Dumont, P.P. Roger, Regulation of thyroid cell proliferation by TSH and other factors: a critical evaluation of in vitro models. Endocr. Rev. 22(5), 631–656 (2001)PubMedCrossRef
Metadata
Title
Functional thyrotropin receptor expression in the ventricle and the effects on ventricular BNP secretion
Authors
Wen Huang
Jin Xu
Fei Jing
Wen-Bin Chen
Ling Gao
Hai-Tao Yuan
Jia-Jun Zhao
Publication date
01-06-2014
Publisher
Springer US
Published in
Endocrine / Issue 2/2014
Print ISSN: 1355-008X
Electronic ISSN: 1559-0100
DOI
https://doi.org/10.1007/s12020-013-0052-6

Other articles of this Issue 2/2014

Endocrine 2/2014 Go to the issue
Live Webinar | 27-06-2024 | 18:00 (CEST)

Keynote webinar | Spotlight on medication adherence

Live: Thursday 27th June 2024, 18:00-19:30 (CEST)

WHO estimates that half of all patients worldwide are non-adherent to their prescribed medication. The consequences of poor adherence can be catastrophic, on both the individual and population level.

Join our expert panel to discover why you need to understand the drivers of non-adherence in your patients, and how you can optimize medication adherence in your clinics to drastically improve patient outcomes.

Prof. Kevin Dolgin
Prof. Florian Limbourg
Prof. Anoop Chauhan
Developed by: Springer Medicine
Obesity Clinical Trial Summary

At a glance: The STEP trials

A round-up of the STEP phase 3 clinical trials evaluating semaglutide for weight loss in people with overweight or obesity.

Developed by: Springer Medicine