Skip to main content
Top
Published in: Investigational New Drugs 4/2013

01-08-2013 | PRECLINICAL STUDIES

Functional and molecular characterization of kinin B1 and B2 receptors in human bladder cancer: implication of the PI3Kγ pathway

Authors: V. Sgnaolin, T. C. B. Pereira, M. R. Bogo, R. Zanin, A. M. O. Battastini, F. B. Morrone, M. M. Campos

Published in: Investigational New Drugs | Issue 4/2013

Login to get access

Summary

Kinins and their receptors have been recently implicated in cancer. Using functional and molecular approaches, we investigated the relevance of kinin B1 and B2 receptors in bladder cancer. Functional studies were conducted using bladder cancer cell lines, and human biopsies were employed for molecular studies. Both B1 des-Arg9-BK and B2 BK receptor agonists stimulated the proliferation of grade 3-derived T24 bladder cancer cells. Furthermore, treatment with B1 and B2 receptor antagonists (SSR240612 and HOE140) markedly inhibited the proliferation of T24 cells. Only higher concentrations of BK increased the proliferation of the grade 1 bladder cancer cell line RT4, while des-Arg9-BK completely failed to induce its proliferation. Real-time PCR revealed that the mRNA expression of kinin receptors, particularly B1 receptors, was increased in T24 cells relative to RT4 cells. Data from bladder cancer human biopsies revealed that B1 receptor expression was increased in all tumor samples and under conditions of chronic inflammation. We also show novel evidence demonstrating that the pharmacological inhibition of PI3Kγ (phosphatidylinositol 3-kinase) with AS252424, concentration-dependently reduced T24 cell proliferation induced by BK or des-Arg9-BK. Finally, the incubation of T24 cells with kinin agonists led to a marked activation of the PI3K/AKT and ERK 1/2 signaling pathways, whereas p38 MAP kinase remained unaffected. Kinin receptors, especially B1 receptors, appear to be implicated in bladder cancer progression. It is tempting to suggest that selective kinin antagonists might represent potential alternative therapies for bladder cancer.
Literature
1.
2.
go back to reference Soloway MS, Sofer M, Vaidya A (2002) Contemporary management of stage T1 transitional cell carcinoma of the bladder. J Urol 167:1573–1583PubMedCrossRef Soloway MS, Sofer M, Vaidya A (2002) Contemporary management of stage T1 transitional cell carcinoma of the bladder. J Urol 167:1573–1583PubMedCrossRef
3.
go back to reference Saad A, Hanbury DC, McNicholas TA, Boustead GB, Morgan S, Woodman AC (2002) A study comparing various noninvasive methods of detecting bladder cancer in urine. BJU Int 89:369–373PubMedCrossRef Saad A, Hanbury DC, McNicholas TA, Boustead GB, Morgan S, Woodman AC (2002) A study comparing various noninvasive methods of detecting bladder cancer in urine. BJU Int 89:369–373PubMedCrossRef
4.
go back to reference Sylvester RJ, Van Der MA, Lamm DL (2002) Intravesical bacillus calmette-guerin reduces the risk of progression in patients with superficial bladder cancer: a metaanalysis of the published results of randomized clinical trials. J Urol 168:1964–1970PubMedCrossRef Sylvester RJ, Van Der MA, Lamm DL (2002) Intravesical bacillus calmette-guerin reduces the risk of progression in patients with superficial bladder cancer: a metaanalysis of the published results of randomized clinical trials. J Urol 168:1964–1970PubMedCrossRef
5.
go back to reference Jordan AM, Weingarten J, Murphy WM (1987) Transitional cell neoplasms of the urinary bladder. Can biologic potential be predicted from histologic grading? Cancer 60:2766–2774PubMedCrossRef Jordan AM, Weingarten J, Murphy WM (1987) Transitional cell neoplasms of the urinary bladder. Can biologic potential be predicted from histologic grading? Cancer 60:2766–2774PubMedCrossRef
6.
go back to reference Lopez-Beltran A, Cheng L, Mazzucchelli R, Bianconi M, Blanca A, Scarpelli M, Montironi R (2008) Morphological and molecular profiles and pathways in bladder neoplasms. Anticancer Res 28:2893–2900PubMed Lopez-Beltran A, Cheng L, Mazzucchelli R, Bianconi M, Blanca A, Scarpelli M, Montironi R (2008) Morphological and molecular profiles and pathways in bladder neoplasms. Anticancer Res 28:2893–2900PubMed
7.
go back to reference Cheng L, Zhang S, Maclennan GT, Williamson SR, Lopez-Beltran A, Montironi R (2011) Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol 42:455–481PubMedCrossRef Cheng L, Zhang S, Maclennan GT, Williamson SR, Lopez-Beltran A, Montironi R (2011) Bladder cancer: translating molecular genetic insights into clinical practice. Hum Pathol 42:455–481PubMedCrossRef
8.
go back to reference Golijanin DJ, Kakiashvili D, Madeb RR, Messing EM, Lerner SP (2006) Chemoprevention of bladder cancer. World J Urol 24:445–472PubMedCrossRef Golijanin DJ, Kakiashvili D, Madeb RR, Messing EM, Lerner SP (2006) Chemoprevention of bladder cancer. World J Urol 24:445–472PubMedCrossRef
10.
go back to reference Jacobs BL, Lee CT, Montie JE (2010) Bladder cancer in 2010: how far have we come? CA Cancer J Clin 60:244–272PubMedCrossRef Jacobs BL, Lee CT, Montie JE (2010) Bladder cancer in 2010: how far have we come? CA Cancer J Clin 60:244–272PubMedCrossRef
11.
go back to reference Campos MM, Leal PC, Nunes RA, Calixto JB (2006) Non-peptide antagonists for kinin B1 receptors: new insight sinto their therapeutic potential for the management of inflammation and pain. Trends Pharmacol Sci 27:646–651PubMedCrossRef Campos MM, Leal PC, Nunes RA, Calixto JB (2006) Non-peptide antagonists for kinin B1 receptors: new insight sinto their therapeutic potential for the management of inflammation and pain. Trends Pharmacol Sci 27:646–651PubMedCrossRef
12.
go back to reference Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46PubMed Regoli D, Barabe J (1980) Pharmacology of bradykinin and related kinins. Pharmacol Rev 32:1–46PubMed
13.
go back to reference Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM (2004) Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143:803–818PubMedCrossRef Calixto JB, Medeiros R, Fernandes ES, Ferreira J, Cabrini DA, Campos MM (2004) Kinin B1 receptors: key G-protein-coupled receptors and their role in inflammatory and painful processes. Br J Pharmacol 143:803–818PubMedCrossRef
14.
go back to reference Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77PubMedCrossRef Leeb-Lundberg LM, Marceau F, Müller-Esterl W, Pettibone DJ, Zuraw BL (2005) International union of pharmacology. XLV. Classification of the kinin receptor family: from molecular mechanisms to pathophysiological consequences. Pharmacol Rev 57:27–77PubMedCrossRef
15.
go back to reference Ehrenfeld P, Figueroa CD, Bhoola KD (2011) Kinin: kallikreins and kinins in cancer. In: Bader M, editor. Kinin. De Gruyter. pp. 217–245 Ehrenfeld P, Figueroa CD, Bhoola KD (2011) Kinin: kallikreins and kinins in cancer. In: Bader M, editor. Kinin. De Gruyter. pp. 217–245
16.
17.
18.
go back to reference Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 16:299–312PubMedCrossRef Figueroa CD, Ehrenfeld P, Bhoola KD (2012) Kinin receptors as targets for cancer therapy. Expert Opin Ther Targets 16:299–312PubMedCrossRef
19.
go back to reference Bhoola K, Ramsaroop R, Plendl J, Cassim B, Dlamini Z, Naicker S (2001) Kallikrein and kinin receptor expression in inflammation and cancer. Biol Chem 382:77–89PubMedCrossRef Bhoola K, Ramsaroop R, Plendl J, Cassim B, Dlamini Z, Naicker S (2001) Kallikrein and kinin receptor expression in inflammation and cancer. Biol Chem 382:77–89PubMedCrossRef
20.
go back to reference Wang JW, Su W, Law YP, Lu CH, Chen YC, Wang JL, Chang HJ, Chen WC, Jan CR (2001) Mechanism of bradykinin-induced Ca2+ mobilization in MG63 human osteosarcoma cells. Horm Res 55:265–270PubMedCrossRef Wang JW, Su W, Law YP, Lu CH, Chen YC, Wang JL, Chang HJ, Chen WC, Jan CR (2001) Mechanism of bradykinin-induced Ca2+ mobilization in MG63 human osteosarcoma cells. Horm Res 55:265–270PubMedCrossRef
21.
go back to reference Ishihara K, Hayash I, Yamashina S, Majima M (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:318–326PubMedCrossRef Ishihara K, Hayash I, Yamashina S, Majima M (2001) A potential role of bradykinin in angiogenesis and growth of S-180 mouse tumors. Jpn J Pharmacol 87:318–326PubMedCrossRef
22.
go back to reference Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M (2002) Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol 2:499–509PubMedCrossRef Ishihara K, Kamata M, Hayashi I, Yamashina S, Majima M (2002) Roles of bradykinin in vascular permeability and angiogenesis in solid tumor. Int Immunopharmacol 2:499–509PubMedCrossRef
23.
go back to reference Raidoo DM, Sawant S, Mahabeer R, Bhoola KD (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharmacology 43:255–263PubMedCrossRef Raidoo DM, Sawant S, Mahabeer R, Bhoola KD (1999) Kinin receptors are expressed in human astrocytic tumour cells. Immunopharmacology 43:255–263PubMedCrossRef
24.
go back to reference Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y (2003) Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res 63:2037–2041PubMed Taub JS, Guo R, Leeb-Lundberg LM, Madden JF, Daaka Y (2003) Bradykinin receptor subtype 1 expression and function in prostate cancer. Cancer Res 63:2037–2041PubMed
25.
go back to reference Gera L, Stewart JM, Fortin JP, Morissette G, Marceau F (2008) Structural modification of the highly potent peptide bradykinin B1 receptor antagonist B9958. Int Immunopharmacol 8:289–292PubMedCrossRef Gera L, Stewart JM, Fortin JP, Morissette G, Marceau F (2008) Structural modification of the highly potent peptide bradykinin B1 receptor antagonist B9958. Int Immunopharmacol 8:289–292PubMedCrossRef
26.
go back to reference Zhao Y, Xue Y, Liu Y, Fu W, Jiang N, An P, Wang P, Yang Z, Wang Y (2005) Study of correlation between expression of bradykinin B2 receptor and pathological grade in human gliomas. Br J Neurosurg 19:322–326PubMedCrossRef Zhao Y, Xue Y, Liu Y, Fu W, Jiang N, An P, Wang P, Yang Z, Wang Y (2005) Study of correlation between expression of bradykinin B2 receptor and pathological grade in human gliomas. Br J Neurosurg 19:322–326PubMedCrossRef
27.
go back to reference Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Müller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35PubMedCrossRef Wu J, Akaike T, Hayashida K, Miyamoto Y, Nakagawa T, Miyakawa K, Müller-Esterl W, Maeda H (2002) Identification of bradykinin receptors in clinical cancer specimens and murine tumor tissues. Int J Cancer 98:29–35PubMedCrossRef
28.
go back to reference Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink MR, Azambuja AA, Barrios CH, Morrone FB, Oliveira-Battastini AM (2010) Differential ectonucleotidase expression in human bladder cancer cell lines. Urol Oncol 28:260–267PubMedCrossRef Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, Wink MR, Azambuja AA, Barrios CH, Morrone FB, Oliveira-Battastini AM (2010) Differential ectonucleotidase expression in human bladder cancer cell lines. Urol Oncol 28:260–267PubMedCrossRef
29.
go back to reference Molina L, Matus CE, Astroza A, Pavicic F, Tapia E, Toledo C, Perez JA, Nualart F, Gonzalez CB, Burgos RA, Figueroa CD, Ehrenfeld P, Poblete MT (2009) Stimulation of the bradykinin B1 receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK 1/2 signaling pathway. Breast Cancer Res Treat 118:499–510PubMedCrossRef Molina L, Matus CE, Astroza A, Pavicic F, Tapia E, Toledo C, Perez JA, Nualart F, Gonzalez CB, Burgos RA, Figueroa CD, Ehrenfeld P, Poblete MT (2009) Stimulation of the bradykinin B1 receptor induces the proliferation of estrogen-sensitive breast cancer cells and activates the ERK 1/2 signaling pathway. Breast Cancer Res Treat 118:499–510PubMedCrossRef
30.
go back to reference Gougat J, Ferrari B, Sarran L, Planchenault C, Poncelet M, Maruani J, Alonso R, Cudennec A, Croci T, Guagnini F, Urban-Szabo K, Martinolle JP, Soubrié P, Finance O, Le Fur G (2004) SSR240612 [(2R)-2-[((3R)-3-(1,3-Benzodioxol-5-yl)-3-{[(6-methoxy-2-naphthyl)sulfonyl]amino}propanoyl) amino]-3-(4-{[2R,6S)-2,6-dimethylpiperidinyl]methyl}phenyl)-N-isopropyl-nmethylpropanamide hydrochloride], a New nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309:661–669PubMedCrossRef Gougat J, Ferrari B, Sarran L, Planchenault C, Poncelet M, Maruani J, Alonso R, Cudennec A, Croci T, Guagnini F, Urban-Szabo K, Martinolle JP, Soubrié P, Finance O, Le Fur G (2004) SSR240612 [(2R)-2-[((3R)-3-(1,3-Benzodioxol-5-yl)-3-{[(6-methoxy-2-naphthyl)sulfonyl]amino}propanoyl) amino]-3-(4-{[2R,6S)-2,6-dimethylpiperidinyl]methyl}phenyl)-N-isopropyl-nmethylpropanamide hydrochloride], a New nonpeptide antagonist of the bradykinin B1 receptor: biochemical and pharmacological characterization. J Pharmacol Exp Ther 309:661–669PubMedCrossRef
31.
go back to reference Andoh T, Akira A, Saiki I, Kuraishi Y (2010) Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 31:238–241PubMedCrossRef Andoh T, Akira A, Saiki I, Kuraishi Y (2010) Bradykinin increases the secretion and expression of endothelin-1 through kinin B2 receptors in melanoma cells. Peptides 31:238–241PubMedCrossRef
32.
go back to reference Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Françon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Rückle T (2006) Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J Med Chem 49:3857–3871PubMedCrossRef Pomel V, Klicic J, Covini D, Church DD, Shaw JP, Roulin K, Burgat-Charvillon F, Valognes D, Camps M, Chabert C, Gillieron C, Françon B, Perrin D, Leroy D, Gretener D, Nichols A, Vitte PA, Carboni S, Rommel C, Schwarz MK, Rückle T (2006) Furan-2-ylmethylene thiazolidinediones as novel, potent, and selective inhibitors of phosphoinositide 3-kinase gamma. J Med Chem 49:3857–3871PubMedCrossRef
33.
go back to reference Rho HW, Lee BC, Choi ES, Choi IJ, Lee YS, Goh SH (2010) Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer 10:240PubMedCrossRef Rho HW, Lee BC, Choi ES, Choi IJ, Lee YS, Goh SH (2010) Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer 10:240PubMedCrossRef
34.
go back to reference Bertram C, Misso N, Fogel-Petrovic M, Figueroa C, Thompson PJ, Bhoola KD (2007) Comparison of kinin B1 and B2 receptor expression in neutrophils of asthmatic and non-asthmatic subjects. Int Immunopharmacol 7:1862–1868PubMedCrossRef Bertram C, Misso N, Fogel-Petrovic M, Figueroa C, Thompson PJ, Bhoola KD (2007) Comparison of kinin B1 and B2 receptor expression in neutrophils of asthmatic and non-asthmatic subjects. Int Immunopharmacol 7:1862–1868PubMedCrossRef
35.
go back to reference Velarde V, de La Cerda PM, Duarte C, Arancibia F, Abbott E, González A, Moreno F, Jaffa AA (2004) Role of reactive oxygen species in bradykinininduced proliferation of vascular smooth muscle cells. Biol Res 37:419–430PubMedCrossRef Velarde V, de La Cerda PM, Duarte C, Arancibia F, Abbott E, González A, Moreno F, Jaffa AA (2004) Role of reactive oxygen species in bradykinininduced proliferation of vascular smooth muscle cells. Biol Res 37:419–430PubMedCrossRef
36.
go back to reference Greco S, Muscella A, Elia MG, Romano S, Storelli C, Marsigliante S (2004) Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. J Cell Physiol 201:84–96PubMedCrossRef Greco S, Muscella A, Elia MG, Romano S, Storelli C, Marsigliante S (2004) Mitogenic signalling by B2 bradykinin receptor in epithelial breast cells. J Cell Physiol 201:84–96PubMedCrossRef
37.
go back to reference Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH, Lai CH, Chen YF, Leung YM, Fu WM (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/AKT, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613:146–154PubMedCrossRef Lu DY, Tang CH, Yeh WL, Wong KL, Lin CP, Chen YH, Lai CH, Chen YF, Leung YM, Fu WM (2009) SDF-1alpha up-regulates interleukin-6 through CXCR4, PI3K/AKT, ERK, and NF-kappaB-dependent pathway in microglia. Eur J Pharmacol 613:146–154PubMedCrossRef
38.
go back to reference Bhoola KD, Misso N, Naran A, Thompson PJ (2007) Current status of tissue kallikrein inhibitors: importance in cancer. Curr Opin Investig Drugs 8:462–468PubMed Bhoola KD, Misso N, Naran A, Thompson PJ (2007) Current status of tissue kallikrein inhibitors: importance in cancer. Curr Opin Investig Drugs 8:462–468PubMed
39.
go back to reference Stewart JM, Gera L, Chan DC, Bunn PA Jr, York EJ, Simkeviciene V, Helfrich B (2002) Bradykinin-related compounds as new drugs for cancer and inflammation. Can J Physiol Pharmacol 80:275–280PubMedCrossRef Stewart JM, Gera L, Chan DC, Bunn PA Jr, York EJ, Simkeviciene V, Helfrich B (2002) Bradykinin-related compounds as new drugs for cancer and inflammation. Can J Physiol Pharmacol 80:275–280PubMedCrossRef
40.
go back to reference Jutras S, Bachvarova M, Keita M, Bascands JP, Mes-Masson AM, Stewart JM, Bachvarov D (2010) Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells – analysis of the molecular mechanisms of its antiproliferative action. FEBS J 277:5146–5160PubMedCrossRef Jutras S, Bachvarova M, Keita M, Bascands JP, Mes-Masson AM, Stewart JM, Bachvarov D (2010) Strong cytotoxic effect of the bradykinin antagonist BKM-570 in ovarian cancer cells – analysis of the molecular mechanisms of its antiproliferative action. FEBS J 277:5146–5160PubMedCrossRef
41.
go back to reference Wang YB, Peng C, Liu YH (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258:44–51PubMedCrossRef Wang YB, Peng C, Liu YH (2007) Low dose of bradykinin selectively increases intracellular calcium in glioma cells. J Neurol Sci 258:44–51PubMedCrossRef
42.
go back to reference Zelawski W, Machnik G, Nowaczyk G, Plewka D, Lorenc Z, Sosada K, Stadnicki A (2006) Expression and localisation of kinin receptors in colorectal polyps. Int Immunopharmacol 6:997–1002PubMedCrossRef Zelawski W, Machnik G, Nowaczyk G, Plewka D, Lorenc Z, Sosada K, Stadnicki A (2006) Expression and localisation of kinin receptors in colorectal polyps. Int Immunopharmacol 6:997–1002PubMedCrossRef
43.
go back to reference Moodley R, Snyman C, Odhav B, Bhoola KD (2005) Visualisation of transforming growth factor-beta 1, tissue kallikrein, and kinin and transforming growth factor-beta receptors on human clear-cell renal carcinoma cells. Biol Chem 386:375–382PubMedCrossRef Moodley R, Snyman C, Odhav B, Bhoola KD (2005) Visualisation of transforming growth factor-beta 1, tissue kallikrein, and kinin and transforming growth factor-beta receptors on human clear-cell renal carcinoma cells. Biol Chem 386:375–382PubMedCrossRef
44.
go back to reference Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386PubMed Marceau F, Hess JF, Bachvarov DR (1998) The B1 receptors for kinins. Pharmacol Rev 50:357–386PubMed
46.
go back to reference Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-AKT pathway in human cancer: rationale and promise. Cancer Cell 4:257–262PubMedCrossRef Luo J, Manning BD, Cantley LC (2003) Targeting the PI3K-AKT pathway in human cancer: rationale and promise. Cancer Cell 4:257–262PubMedCrossRef
47.
go back to reference Shaw RJ, Cantley LC (2006) Ras, PI3K and mTOR signalling controls tumour cell growth. Nature 25:424–430CrossRef Shaw RJ, Cantley LC (2006) Ras, PI3K and mTOR signalling controls tumour cell growth. Nature 25:424–430CrossRef
48.
go back to reference Spitzenberg V, König C, Ulm S, Marone R, Röpke L, Müller JP, Grün M, Bauer R, Rubio I, Wymann MP, Voigt A, Wetzker R (2010) Targeting PI3K in neuroblastoma. J Cancer Res Clin Oncol 136:1881–1890PubMedCrossRef Spitzenberg V, König C, Ulm S, Marone R, Röpke L, Müller JP, Grün M, Bauer R, Rubio I, Wymann MP, Voigt A, Wetzker R (2010) Targeting PI3K in neuroblastoma. J Cancer Res Clin Oncol 136:1881–1890PubMedCrossRef
49.
go back to reference Knowles MA, Platt FM, Ross RL, Hurst CD (2009) Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 28:305–316PubMedCrossRef Knowles MA, Platt FM, Ross RL, Hurst CD (2009) Phosphatidylinositol 3-kinase (PI3K) pathway activation in bladder cancer. Cancer Metastasis Rev 28:305–316PubMedCrossRef
50.
go back to reference Greco S, Elia MG, Muscella A, Romano S, Storelli C (2005) Bradykinin stimulates cell proliferation through an extracellularregulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 186:291–301PubMedCrossRef Greco S, Elia MG, Muscella A, Romano S, Storelli C (2005) Bradykinin stimulates cell proliferation through an extracellularregulated kinase 1 and 2-dependent mechanism in breast cancer cells in primary culture. J Endocrinol 186:291–301PubMedCrossRef
51.
go back to reference Greco S, Storelli C, Marsigliante S (2006) Protein kinase C (PKC)-delta/-epsilon mediate the PKC/AKT-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 in MCF-7 cells stimulated by bradykinin. J Endocrinol 188:79–89PubMedCrossRef Greco S, Storelli C, Marsigliante S (2006) Protein kinase C (PKC)-delta/-epsilon mediate the PKC/AKT-dependent phosphorylation of extracellular signal-regulated kinases 1 and 2 in MCF-7 cells stimulated by bradykinin. J Endocrinol 188:79–89PubMedCrossRef
Metadata
Title
Functional and molecular characterization of kinin B1 and B2 receptors in human bladder cancer: implication of the PI3Kγ pathway
Authors
V. Sgnaolin
T. C. B. Pereira
M. R. Bogo
R. Zanin
A. M. O. Battastini
F. B. Morrone
M. M. Campos
Publication date
01-08-2013
Publisher
Springer US
Published in
Investigational New Drugs / Issue 4/2013
Print ISSN: 0167-6997
Electronic ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-012-9907-6

Other articles of this Issue 4/2013

Investigational New Drugs 4/2013 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine