Skip to main content
Top
Published in: Journal of Neuro-Oncology 1/2017

01-03-2017 | Laboratory Investigation

Functional analysis of KIF20A, a potential immunotherapeutic target for glioma

Authors: Katsuya Saito, Shigeki Ohta, Yutaka Kawakami, Kazunari Yoshida, Masahiro Toda

Published in: Journal of Neuro-Oncology | Issue 1/2017

Login to get access

Abstract

Kinesin family member 20A (KIF20A), an ideal cancer-testis antigen, was reported to be a promising immunotherapeutic target for pancreatic cancers. Clinical trials of KIF20A peptide vaccine immunotherapy have been conducted against pancreatic cancers. To demonstrate the efficacy of KIF20A as a candidate molecular target for gliomas, we analyzed the expression and function of KIF20A in gliomas. Western blot and quantitative PCR analyses showed that KIF20A expression in glioma cell lines and glioma tissues was high compared with that found in a normal brain. KIF20A immunostaining of glioma cells and glioma tissues demonstrated that KIF20A was involved in spindle formation and cytokinesis, and that KIF20A was highly expressed, especially in glioma cells undergoing mitosis. In silico analysis of a cancer microarray database revealed that KIF20A was highly expressed in gliomas depending on the pathological grade, and glioma patients with higher expression of KIF20A showed poorer prognosis. Down-regulating KIF20A reduced cell proliferation in glioma cells due to the failure of cytokinesis and generation of binucleated cells. Additionally, KIF20A inhibition induced significant apoptosis in SF126 glioma cells. Taken together, KIF20A is a tumor-associated antigen involved in the glioma cell growth and cell survival, suggesting that KIF20A is an oncoantigen of gliomas. Thus, KIF20A is a candidate novel immunotherapeutic target for gliomas.
Appendix
Available only for authorised users
Literature
1.
go back to reference Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996CrossRefPubMed
2.
go back to reference Imai K, Hirata S, Irie A, Senju S, Ikuta Y et al (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104:300–307CrossRefPubMed Imai K, Hirata S, Irie A, Senju S, Ikuta Y et al (2011) Identification of HLA-A2-restricted CTL epitopes of a novel tumour-associated antigen, KIF20A, overexpressed in pancreatic cancer. Br J Cancer 104:300–307CrossRefPubMed
3.
go back to reference Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H et al (2004) Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23:2385–2400CrossRefPubMed Nakamura T, Furukawa Y, Nakagawa H, Tsunoda T, Ohigashi H et al (2004) Genome-wide cDNA microarray analysis of gene expression profiles in pancreatic cancers using populations of tumor cells and normal ductal epithelial cells selected for purity by laser microdissection. Oncogene 23:2385–2400CrossRefPubMed
4.
go back to reference Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A et al (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580–585CrossRefPubMed Echard A, Jollivet F, Martinez O, Lacapere JJ, Rousselet A et al (1998) Interaction of a Golgi-associated kinesin-like protein with Rab6. Science 279:580–585CrossRefPubMed
5.
go back to reference Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10:60–73CrossRefPubMed Hirokawa N, Noda Y, Okada Y (1998) Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 10:60–73CrossRefPubMed
7.
go back to reference Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D et al (2012) KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180:131–140CrossRefPubMed Gasnereau I, Boissan M, Margall-Ducos G, Couchy G, Wendum D et al (2012) KIF20A mRNA and its product MKlp2 are increased during hepatocyte proliferation and hepatocarcinogenesis. Am J Pathol 180:131–140CrossRefPubMed
8.
go back to reference Yamashita J, Fukushima S, Jinnin M, Honda N, Makino K et al (2012) Kinesin family member 20 A is a novel melanoma-associated antigen. Acta Derm Venereol 92:593–597CrossRefPubMed Yamashita J, Fukushima S, Jinnin M, Honda N, Makino K et al (2012) Kinesin family member 20 A is a novel melanoma-associated antigen. Acta Derm Venereol 92:593–597CrossRefPubMed
9.
go back to reference Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H et al (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135CrossRefPubMedPubMedCentral Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H et al (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 62:125–135CrossRefPubMedPubMedCentral
10.
go back to reference Yu JS, Liu G, Ying H, Yong WH, Black KL et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979CrossRefPubMed Yu JS, Liu G, Ying H, Yong WH, Black KL et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979CrossRefPubMed
11.
go back to reference Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H (2013) Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 11:291CrossRefPubMedPubMedCentral Asahara S, Takeda K, Yamao K, Maguchi H, Yamaue H (2013) Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 11:291CrossRefPubMedPubMedCentral
12.
go back to reference Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H et al (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65:105–112PubMed Taniuchi K, Nakagawa H, Nakamura T, Eguchi H, Ohigashi H et al (2005) Down-regulation of RAB6KIFL/KIF20A, a kinesin involved with membrane trafficking of discs large homologue 5, can attenuate growth of pancreatic cancer cell. Cancer Res 65:105–112PubMed
14.
15.
go back to reference Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 166:167–172CrossRefPubMedPubMedCentral Gruneberg U, Neef R, Honda R, Nigg EA, Barr FA (2004) Relocation of Aurora B from centromeres to the central spindle at the metaphase to anaphase transition requires MKlp2. J Cell Biol 166:167–172CrossRefPubMedPubMedCentral
16.
go back to reference Echard A (1998) Interaction of a Golgi-Associated Kinesin-Like Protein with Rab6. Science 279:580–585CrossRefPubMed Echard A (1998) Interaction of a Golgi-Associated Kinesin-Like Protein with Rab6. Science 279:580–585CrossRefPubMed
17.
go back to reference Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696CrossRefPubMed Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009) Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696CrossRefPubMed
18.
go back to reference Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077CrossRefPubMed Jordens I, Marsman M, Kuijl C, Neefjes J (2005) Rab proteins, connecting transport and vesicle fusion. Traffic 6:1070–1077CrossRefPubMed
19.
go back to reference Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M (2013) Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2:e27010CrossRefPubMedPubMedCentral Okuyama R, Aruga A, Hatori T, Takeda K, Yamamoto M (2013) Immunological responses to a multi-peptide vaccine targeting cancer-testis antigens and VEGFRs in advanced pancreatic cancer patients. Oncoimmunology 2:e27010CrossRefPubMedPubMedCentral
20.
go back to reference Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y et al (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 19:4508–4520CrossRefPubMed Tomita Y, Yuno A, Tsukamoto H, Senju S, Kuroda Y et al (2013) Identification of promiscuous KIF20A long peptides bearing both CD4+ and CD8+ T-cell epitopes: KIF20A-specific CD4+ T-cell immunity in patients with malignant tumor. Clin Cancer Res 19:4508–4520CrossRefPubMed
21.
go back to reference Eggert US, Mitchison TJ, Field CM (2006) Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem 75:543–566CrossRefPubMed Eggert US, Mitchison TJ, Field CM (2006) Animal cytokinesis: from parts list to mechanisms. Annu Rev Biochem 75:543–566CrossRefPubMed
23.
24.
25.
go back to reference Wheatley SP, Wang Y (1996) Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 135:981–989CrossRefPubMed Wheatley SP, Wang Y (1996) Midzone microtubule bundles are continuously required for cytokinesis in cultured epithelial cells. J Cell Biol 135:981–989CrossRefPubMed
26.
go back to reference Yan GR, Zou FY, Dang BL, Zhang Y, Yu G et al (2012) Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 12:2391–2399CrossRefPubMed Yan GR, Zou FY, Dang BL, Zhang Y, Yu G et al (2012) Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics 12:2391–2399CrossRefPubMed
27.
go back to reference Yu Y, Feng YM (2010) The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer 116:5150–5160CrossRefPubMed Yu Y, Feng YM (2010) The role of kinesin family proteins in tumorigenesis and progression: potential biomarkers and molecular targets for cancer therapy. Cancer 116:5150–5160CrossRefPubMed
28.
go back to reference Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54CrossRefPubMed Adams RR, Carmena M, Earnshaw WC (2001) Chromosomal passengers and the (aurora) ABCs of mitosis. Trends Cell Biol 11:49–54CrossRefPubMed
29.
go back to reference D’Avino PP, Savoian MS, Glover DM (2005) Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci 118:1549–1558CrossRefPubMed D’Avino PP, Savoian MS, Glover DM (2005) Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy. J Cell Sci 118:1549–1558CrossRefPubMed
30.
go back to reference Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763–1774CrossRefPubMedPubMedCentral Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC (1998) INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763–1774CrossRefPubMedPubMedCentral
31.
go back to reference Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812CrossRefPubMed Ruchaud S, Carmena M, Earnshaw WC (2007) Chromosomal passengers: conducting cell division. Nat Rev Mol Cell Biol 8:798–812CrossRefPubMed
32.
go back to reference Buczkowicz P, Zarghooni M, Bartels U, Morrison A, Misuraca KL et al (2013) Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma. Brain Pathol 23:244–253CrossRefPubMed Buczkowicz P, Zarghooni M, Bartels U, Morrison A, Misuraca KL et al (2013) Aurora kinase B is a potential therapeutic target in pediatric diffuse intrinsic pontine glioma. Brain Pathol 23:244–253CrossRefPubMed
33.
go back to reference Carvajal RD, Tse A, Schwartz GK (2006) Aurora kinases: new targets for cancer therapy. Clin Cancer Res 12:6869–6875CrossRefPubMed Carvajal RD, Tse A, Schwartz GK (2006) Aurora kinases: new targets for cancer therapy. Clin Cancer Res 12:6869–6875CrossRefPubMed
34.
go back to reference Portella G, Passaro C, Chieffi P (2011) Aurora B: a new prognostic marker and therapeutic target in cancer. Curr Med Chem 18:482–496CrossRefPubMed Portella G, Passaro C, Chieffi P (2011) Aurora B: a new prognostic marker and therapeutic target in cancer. Curr Med Chem 18:482–496CrossRefPubMed
35.
go back to reference Yeung SC, Gully C, Lee MH (2008) Aurora-B kinase inhibitors for cancer chemotherapy. Mini Rev Med Chem 8:1514–1525CrossRefPubMed Yeung SC, Gully C, Lee MH (2008) Aurora-B kinase inhibitors for cancer chemotherapy. Mini Rev Med Chem 8:1514–1525CrossRefPubMed
36.
go back to reference Zeng WF, Navaratne K, Prayson RA, Weil RJ (2007) Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol 60:218–221CrossRefPubMedPubMedCentral Zeng WF, Navaratne K, Prayson RA, Weil RJ (2007) Aurora B expression correlates with aggressive behaviour in glioblastoma multiforme. J Clin Pathol 60:218–221CrossRefPubMedPubMedCentral
37.
go back to reference Jung Y, Joo KM, Seong DH, Choi YL, Kong DS et al (2012) Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol 40:1122–1132PubMed Jung Y, Joo KM, Seong DH, Choi YL, Kong DS et al (2012) Identification of prognostic biomarkers for glioblastomas using protein expression profiling. Int J Oncol 40:1122–1132PubMed
38.
go back to reference Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H et al (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97:1077–1083CrossRefPubMed Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H et al (2003) Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97:1077–1083CrossRefPubMed
39.
go back to reference Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K et al (2005) Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol 72:231–238CrossRefPubMed Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K et al (2005) Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB-1 index. J Neurooncol 72:231–238CrossRefPubMed
40.
go back to reference Zhen HN, Zhang X, Hu PZ, Yang TT, Fei Z et al (2005) Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104:2775–2783CrossRefPubMed Zhen HN, Zhang X, Hu PZ, Yang TT, Fei Z et al (2005) Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104:2775–2783CrossRefPubMed
41.
go back to reference Ngan CY, Yamamoto H, Takagi A, Fujie Y, Takemasa I et al (2008) Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer Sci 99:129–139PubMed Ngan CY, Yamamoto H, Takagi A, Fujie Y, Takemasa I et al (2008) Oxaliplatin induces mitotic catastrophe and apoptosis in esophageal cancer cells. Cancer Sci 99:129–139PubMed
42.
go back to reference Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:385–392CrossRefPubMed Vitale I, Galluzzi L, Castedo M, Kroemer G (2011) Mitotic catastrophe: a mechanism for avoiding genomic instability. Nat Rev Mol Cell Biol 12:385–392CrossRefPubMed
43.
go back to reference Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65:5181–5189CrossRefPubMed Wonsey DR, Follettie MT (2005) Loss of the forkhead transcription factor FoxM1 causes centrosome amplification and mitotic catastrophe. Cancer Res 65:5181–5189CrossRefPubMed
44.
go back to reference Kenney-Herbert EM, Ball SL, Al-Mayhani TM, Watts C (2011) Glioblastoma cell lines derived under serum-free conditions can be used as an in vitro model system to evaluate therapeutic response. Cancer Lett 305:50–57CrossRefPubMed Kenney-Herbert EM, Ball SL, Al-Mayhani TM, Watts C (2011) Glioblastoma cell lines derived under serum-free conditions can be used as an in vitro model system to evaluate therapeutic response. Cancer Lett 305:50–57CrossRefPubMed
45.
go back to reference Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403CrossRefPubMed Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q et al (2006) Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 9:391–403CrossRefPubMed
46.
go back to reference Vik-Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P et al (2010) Brain tumor stemcells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro Oncol 12:1220–1230PubMedPubMedCentral Vik-Mo EO, Sandberg C, Olstorn H, Varghese M, Brandal P et al (2010) Brain tumor stemcells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro Oncol 12:1220–1230PubMedPubMedCentral
Metadata
Title
Functional analysis of KIF20A, a potential immunotherapeutic target for glioma
Authors
Katsuya Saito
Shigeki Ohta
Yutaka Kawakami
Kazunari Yoshida
Masahiro Toda
Publication date
01-03-2017
Publisher
Springer US
Published in
Journal of Neuro-Oncology / Issue 1/2017
Print ISSN: 0167-594X
Electronic ISSN: 1573-7373
DOI
https://doi.org/10.1007/s11060-016-2360-1

Other articles of this Issue 1/2017

Journal of Neuro-Oncology 1/2017 Go to the issue