Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2018

Open Access 01-12-2018 | Research

Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects

Authors: Louise A. E. Brown, Sebastian C. Onciul, David A. Broadbent, Kerryanne Johnson, Graham J. Fent, James R. J. Foley, Pankaj Garg, Pei G. Chew, Kristopher Knott, Erica Dall’Armellina, Peter P. Swoboda, Hui Xue, John P. Greenwood, James C. Moon, Peter Kellman, Sven Plein

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2018

Login to get access

Abstract

Background

Non-invasive assessment of myocardial ischaemia is a cornerstone of the diagnosis of coronary artery disease. Measurement of myocardial blood flow (MBF) using positron emission tomography (PET) is the current reference standard for non-invasive quantification of myocardial ischaemia. Dynamic myocardial perfusion cardiovascular magnetic resonance (CMR) offers an alternative to PET and a recently developed method with automated inline perfusion mapping has shown good correlation of MBF values between CMR and PET. This study assessed the repeatability of myocardial perfusion mapping by CMR in healthy subjects.

Methods

Forty-two healthy subjects were recruited and underwent adenosine stress and rest perfusion CMR on two visits. Scans were repeated with a minimum interval of 7 days. Intrastudy rest and stress MBF repeatability were assessed with a 15-min interval between acquisitions. Interstudy rest and stress MBF and myocardial perfusion reserve (MPR) were measured for global myocardium and regionally for coronary territories and slices.

Results

There was no significant difference in intrastudy repeated global rest MBF (0.65 ± 0.13 ml/g/min vs 0.62 ± 0.12 ml/g/min, p = 0.24, repeatability coefficient (RC) =24%) or stress (2.89 ± 0.56 ml/g/min vs 2.83 ± 0.64 ml/g/min, p = 0.41, RC = 29%) MBF. No significant difference was seen in interstudy repeatability for global rest MBF (0.64 ± 0.13 ml/g/min vs 0.64 ± 0.15 ml/g/min, p = 0.80, RC = 32%), stress MBF (2.71 ± 0.61 ml/g/min vs 2.55 ± 0.57 ml/g/min, p = 0.12, RC = 33%) or MPR (4.24 ± 0.69 vs 3.73 ± 0.76, p = 0.25, RC = 36%). Regional repeatability was good for stress (RC = 30–37%) and rest MBF (RC = 32–36%) but poorer for MPR (RC = 35–43%). Within subject coefficient of variation was 8% for rest and 11% for stress within the same study, and 11% for rest and 12% for stress between studies.

Conclusions

Fully automated, inline, myocardial perfusion mapping by CMR shows good repeatability that is similar to the published PET literature. Both rest and stress MBF show better repeatability than MPR, particularly in regional analysis.
Appendix
Available only for authorised users
Literature
1.
go back to reference Tonino PAL, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery Stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.CrossRefPubMed Tonino PAL, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, et al. Angiographic versus functional severity of coronary artery Stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55:2816–21.CrossRefPubMed
2.
go back to reference Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:210–5.CrossRefPubMed Fischer JJ, Samady H, McPherson JA, Sarembock IJ, Powers ER, Gimple LW, et al. Comparison between visual assessment and quantitative angiography versus fractional flow reserve for native coronary narrowings of moderate severity. Am J Cardiol. 2002;90:210–5.CrossRefPubMed
3.
go back to reference Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.CrossRefPubMed Hamilos M, Muller O, Cuisset T, Ntalianis A, Chlouverakis G, Sarno G, et al. Long-term clinical outcome after fractional flow reserve-guided treatment in patients with angiographically equivocal left main coronary artery stenosis. Circulation. 2009;120:1505–12.CrossRefPubMed
7.
go back to reference Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29:886–97.CrossRefPubMed Jerosch-Herold M, Swingen C, Seethamraju RT. Myocardial blood flow quantification with MRI by model-independent deconvolution. Med Phys. 2002;29:886–97.CrossRefPubMed
8.
go back to reference Larghat AM, Maredia N, Biglands J, Greenwood JP, Ball SG, Jerosch-Herold M, et al. Reproducibility of first-pass cardiovascular magnetic resonance myocardial perfusion. J Magn Reson Imaging. 2013;37:865–74.CrossRefPubMed Larghat AM, Maredia N, Biglands J, Greenwood JP, Ball SG, Jerosch-Herold M, et al. Reproducibility of first-pass cardiovascular magnetic resonance myocardial perfusion. J Magn Reson Imaging. 2013;37:865–74.CrossRefPubMed
11.
13.
go back to reference Ng MKC, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113:2054–61.CrossRefPubMed Ng MKC, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation. 2006;113:2054–61.CrossRefPubMed
14.
go back to reference Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40:1848–56.PubMed Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med. 1999;40:1848–56.PubMed
15.
go back to reference Manabe O, Yoshinaga K, Katoh C, Naya M, Dekemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82 Rb dynamic PET. J Nucl Med. 2009;50:68–71.CrossRefPubMed Manabe O, Yoshinaga K, Katoh C, Naya M, Dekemp RA, Tamaki N. Repeatability of rest and hyperemic myocardial blood flow measurements with 82 Rb dynamic PET. J Nucl Med. 2009;50:68–71.CrossRefPubMed
16.
go back to reference Nagamachi S, Czernin J, Kim A, Sun K, Bottcher M, Phelps ME, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med. 1996;37:1626–31.PubMed Nagamachi S, Czernin J, Kim A, Sun K, Bottcher M, Phelps ME, et al. Reproducibility of measurements of regional resting and hyperemic myocardial blood flow assessed with PET. J Nucl Med. 1996;37:1626–31.PubMed
17.
go back to reference Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4:402–12.CrossRefPubMed Sdringola S, Johnson NP, Kirkeeide RL, Cid E, Gould KL. Impact of unexpected factors on quantitative myocardial perfusion and coronary flow reserve in young, asymptomatic volunteers. JACC Cardiovasc Imaging. 2011;4:402–12.CrossRefPubMed
18.
go back to reference Kitkungvan D, Johnson NP, Roby AE, Patel MB, Kirkeeide R, Gould KL. Routine clinical quantitative rest stress myocardial perfusion for managing coronary artery disease: Clinical Relevance of Test-Retest Variability. JACC Cardiovasc Imaging. 2017; Kitkungvan D, Johnson NP, Roby AE, Patel MB, Kirkeeide R, Gould KL. Routine clinical quantitative rest stress myocardial perfusion for managing coronary artery disease: Clinical Relevance of Test-Retest Variability. JACC Cardiovasc Imaging. 2017;
19.
go back to reference Ocneanu AF, DeKemp RA, Renaud JM, Adler A, Beanlands RSB, Klein R. Optimally repeatable kinetic model variant for myocardial blood flow measurements with 82Rb PET. Comput Math Methods Med. 2017; Ocneanu AF, DeKemp RA, Renaud JM, Adler A, Beanlands RSB, Klein R. Optimally repeatable kinetic model variant for myocardial blood flow measurements with 82Rb PET. Comput Math Methods Med. 2017;
20.
go back to reference Jerosch-Herold M, Vazquez G, Wang L, Jacobs DRJ, Folsom AR. Variability of myocardial blood flow measurements by magnetic resonance imaging in the multi-ethnic study of atherosclerosis. Investig Radiol. 2008;43:155–61.CrossRef Jerosch-Herold M, Vazquez G, Wang L, Jacobs DRJ, Folsom AR. Variability of myocardial blood flow measurements by magnetic resonance imaging in the multi-ethnic study of atherosclerosis. Investig Radiol. 2008;43:155–61.CrossRef
21.
go back to reference Likhite D, Suksaranjit P, Adluru G, Hu N, Weng C, Kholmovski E, et al. Interstudy repeatability of self-gated quantitative myocardial perfusion MRI. J Magn Reson Imaging. 2016;43:1369–78.CrossRefPubMed Likhite D, Suksaranjit P, Adluru G, Hu N, Weng C, Kholmovski E, et al. Interstudy repeatability of self-gated quantitative myocardial perfusion MRI. J Magn Reson Imaging. 2016;43:1369–78.CrossRefPubMed
22.
go back to reference Elkington AG, Gatehouse PD, Ablitt NA, Yang G-Z, Firmin DN, Pennell DJ. Interstudy reproducibility of quantitative perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7:815–22.CrossRefPubMed Elkington AG, Gatehouse PD, Ablitt NA, Yang G-Z, Firmin DN, Pennell DJ. Interstudy reproducibility of quantitative perfusion cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2005;7:815–22.CrossRefPubMed
23.
go back to reference Wyss CA, Koepfli P, Mikolajczyk K, Burger C, Von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med. 2003;44:146–54.PubMed Wyss CA, Koepfli P, Mikolajczyk K, Burger C, Von Schulthess GK, Kaufmann PA. Bicycle exercise stress in PET for assessment of coronary flow reserve: repeatability and comparison with adenosine stress. J Nucl Med. 2003;44:146–54.PubMed
24.
go back to reference Johnson NP, Gould KL. Regadenoson versus dipyridamole hyperemia for cardiac PET imaging. JACC Cardiovasc Imaging. 2015;8:438–47.CrossRefPubMed Johnson NP, Gould KL. Regadenoson versus dipyridamole hyperemia for cardiac PET imaging. JACC Cardiovasc Imaging. 2015;8:438–47.CrossRefPubMed
25.
go back to reference Uren NG, Melin JA, de Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med. 1994;330:1782–8.CrossRefPubMed Uren NG, Melin JA, de Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary artery stenosis. N Engl J Med. 1994;330:1782–8.CrossRefPubMed
26.
go back to reference Dakak N, Quyyumi AA, Eisenhofer G, Goldstein DS, Iii RC. Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with Coranary artery disease. Am J Cardiol. 1995;76:125–30.CrossRefPubMed Dakak N, Quyyumi AA, Eisenhofer G, Goldstein DS, Iii RC. Sympathetically mediated effects of mental stress on the cardiac microcirculation of patients with Coranary artery disease. Am J Cardiol. 1995;76:125–30.CrossRefPubMed
27.
go back to reference Bottcher M, Czernin J, Sun K, Phelps ME, Schelbert HR. Effect of caffeine on myocardial blood flow at rest and during pharmacological vasodilation. J Nucl Med. 1995;36:2016–21.PubMed Bottcher M, Czernin J, Sun K, Phelps ME, Schelbert HR. Effect of caffeine on myocardial blood flow at rest and during pharmacological vasodilation. J Nucl Med. 1995;36:2016–21.PubMed
30.
go back to reference Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang S, Schelbert HR. Noninvasive Quantification of Myocardial Blood Flow in Humans A Direct Comparison of the [ N]Ammonia and the [ O]Water Techniques. Circ Cardiovasc Imaging. 1996;93:2000–6. Nitzsche EU, Choi Y, Czernin J, Hoh CK, Huang S, Schelbert HR. Noninvasive Quantification of Myocardial Blood Flow in Humans A Direct Comparison of the [ N]Ammonia and the [ O]Water Techniques. Circ Cardiovasc Imaging. 1996;93:2000–6.
31.
go back to reference Schindler TH, Zhang XL, Prior JO, Cadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging. 2007;34:1178–88.CrossRefPubMed Schindler TH, Zhang XL, Prior JO, Cadenas J, Dahlbom M, Sayre J, et al. Assessment of intra- and interobserver reproducibility of rest and cold pressor test-stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Imaging. 2007;34:1178–88.CrossRefPubMed
32.
go back to reference Keith GA, Rodgers CT, Chappell MA, Robson MD. A Look-Locker Acquisition Scheme for Quantitative Myocardial Perfusion Imaging with FAIR Arterial Spin Labeling in Humans at 3 Tesla. Magn Reson Med. 2017;78:541–9.CrossRefPubMed Keith GA, Rodgers CT, Chappell MA, Robson MD. A Look-Locker Acquisition Scheme for Quantitative Myocardial Perfusion Imaging with FAIR Arterial Spin Labeling in Humans at 3 Tesla. Magn Reson Med. 2017;78:541–9.CrossRefPubMed
Metadata
Title
Fully automated, inline quantification of myocardial blood flow with cardiovascular magnetic resonance: repeatability of measurements in healthy subjects
Authors
Louise A. E. Brown
Sebastian C. Onciul
David A. Broadbent
Kerryanne Johnson
Graham J. Fent
James R. J. Foley
Pankaj Garg
Pei G. Chew
Kristopher Knott
Erica Dall’Armellina
Peter P. Swoboda
Hui Xue
John P. Greenwood
James C. Moon
Peter Kellman
Sven Plein
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2018
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-018-0462-y

Other articles of this Issue 1/2018

Journal of Cardiovascular Magnetic Resonance 1/2018 Go to the issue