Skip to main content
Top
Published in: Canadian Journal of Anesthesia/Journal canadien d'anesthésie 2/2014

01-02-2014 | Special Article

From the Journal archives: Understanding the mechanism(s) regulating hypoxic pulmonary vasoconstriction: how an early study has led to novel translational approaches

Authors: Neil M. Goldenberg, MD, PhD, Gregory M. T. Hare, MD, PhD

Published in: Canadian Journal of Anesthesia/Journal canadien d'anesthésie | Issue 2/2014

Login to get access

Summary

Hypoxic pulmonary vasoconstriction (HPV) is a fundamental physiological process whereby ventilation/perfusion matching is optimized through the constriction of the pulmonary circulation supplying poorly ventilated lung units. In their 1981 paper in the Journal, Noble, Kay, and Fisher used a series of animal experiments to show that alveolar carbon dioxide (CO2) plays a critical role in the regulation of hypoxic pulmonary vasoconstriction. At physiological concentrations, CO2 potentiates the HPV response, and the absence of alveolar CO2 blunts HPV. The enhancement of HPV by CO2 resulted in reduced perfusion of specific hypoxic lung regions, thereby improving systemic oxygenation in lung-ventilated dogs.

Authors

William H. Noble, J. Colin Kay, Joseph A. Fisher

Citation

Can Anaesth Soc J 1981; 28: 422-30.

Purpose

To determine the dominant effect of variations in alveolar carbon dioxide tension on hypoxic pulmonary vasoconstriction.

Principal findings

The group found that 1) increasing alveolar carbon dioxide concentrations enhanced hypoxic pulmonary vasoconstriction; 2) this enhancement improved oxygenation in ventilated dogs with regional alveolar hypoxia; and 3) this enhanced oxygenation was not due to increased cardiac output.

Conclusions

Increased alveolar carbon dioxide enhances hypoxic pulmonary vasoconstriction. In clinical scenarios where hypoventilated or hypoxic lung regions exist, e.g., one-lung ventilation or lung consolidation, permissive hypercapnea may improve oxygenation.
Literature
1.
go back to reference Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92: 367-520.PubMedCrossRef Sylvester JT, Shimoda LA, Aaronson PI, Ward JP. Hypoxic pulmonary vasoconstriction. Physiol Rev 2012; 92: 367-520.PubMedCrossRef
2.
go back to reference Ito S, Mardimae A, Han J, et al. Non-invasive prospective targeting of arterial P(CO2) in subjects at rest. J Physiol 2008; 586(Pt 15): 3675-82.PubMedCrossRef Ito S, Mardimae A, Han J, et al. Non-invasive prospective targeting of arterial P(CO2) in subjects at rest. J Physiol 2008; 586(Pt 15): 3675-82.PubMedCrossRef
3.
go back to reference Noble WH, Kay JC, Fisher JA. The effect of PCO2 on hypoxic pulmonary vasoconstriction. Can Anaesth Soc J 1981; 28: 422-30.PubMedCrossRef Noble WH, Kay JC, Fisher JA. The effect of PCO2 on hypoxic pulmonary vasoconstriction. Can Anaesth Soc J 1981; 28: 422-30.PubMedCrossRef
4.
go back to reference Slessarev M, Han J, Mardimae A, et al. Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol 2007; 581(Pt 3): 1207-19.PubMedCrossRef Slessarev M, Han J, Mardimae A, et al. Prospective targeting and control of end-tidal CO2 and O2 concentrations. J Physiol 2007; 581(Pt 3): 1207-19.PubMedCrossRef
5.
go back to reference Fierstra J, Machina M, Battisti-Charbonney A, Duffin J, Fisher JA, Minkovich L. End-inspiratory rebreathing reduces the end-tidal to arterial PCO2 gradient in mechanically ventilated pigs. Intensive Care Med 2011; 37: 1543-50.PubMedCrossRef Fierstra J, Machina M, Battisti-Charbonney A, Duffin J, Fisher JA, Minkovich L. End-inspiratory rebreathing reduces the end-tidal to arterial PCO2 gradient in mechanically ventilated pigs. Intensive Care Med 2011; 37: 1543-50.PubMedCrossRef
6.
go back to reference Fierstra J, Poublanc J, Han JS, et al. Steal physiology is spatially associated with cortical thinning. J Neurol Neurosurg Psychiatry 2010; 81: 290-3.PubMedCrossRef Fierstra J, Poublanc J, Han JS, et al. Steal physiology is spatially associated with cortical thinning. J Neurol Neurosurg Psychiatry 2010; 81: 290-3.PubMedCrossRef
8.
go back to reference Laffey JG, Engelberts D, Kavanagh BP. Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 2000; 161: 141-6.PubMedCrossRef Laffey JG, Engelberts D, Kavanagh BP. Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 2000; 161: 141-6.PubMedCrossRef
9.
go back to reference Fisher J, Noble WH, Kay JC. Hypoxemia following pulmonary embolism: a dog model of altering regional perfusion. Anesthesiology 1981; 54: 204-9.PubMedCrossRef Fisher J, Noble WH, Kay JC. Hypoxemia following pulmonary embolism: a dog model of altering regional perfusion. Anesthesiology 1981; 54: 204-9.PubMedCrossRef
10.
go back to reference van den Elshout FJ, van Herwaarden CL, Folgering HT. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 1991; 46: 28-32.PubMedCrossRef van den Elshout FJ, van Herwaarden CL, Folgering HT. Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 1991; 46: 28-32.PubMedCrossRef
11.
go back to reference Bayindir O, Akpinar B, Ozbek U, et al. The hazardous effects of alveolar hypocapnia on lung mechanics during weaning from cardiopulmonary bypass. Perfusion 2000; 15: 27-31.PubMedCrossRef Bayindir O, Akpinar B, Ozbek U, et al. The hazardous effects of alveolar hypocapnia on lung mechanics during weaning from cardiopulmonary bypass. Perfusion 2000; 15: 27-31.PubMedCrossRef
12.
go back to reference Ballester E, Reyes A, Roca J, Guitart R, Wagner PD, Rodriguez-Roisin R. Ventilation-perfusion mismatching in acute severe asthma: effects of salbutamol and 100% oxygen. Thorax 1989; 44: 258-67.PubMedCrossRef Ballester E, Reyes A, Roca J, Guitart R, Wagner PD, Rodriguez-Roisin R. Ventilation-perfusion mismatching in acute severe asthma: effects of salbutamol and 100% oxygen. Thorax 1989; 44: 258-67.PubMedCrossRef
13.
go back to reference Sommer LZ, Iscoe S, Robicsek A, et al. A simple breathing circuit minimizing changes in alveolar ventilation during hyperpnoea. Eur Respir J 1998; 12: 698-701.PubMedCrossRef Sommer LZ, Iscoe S, Robicsek A, et al. A simple breathing circuit minimizing changes in alveolar ventilation during hyperpnoea. Eur Respir J 1998; 12: 698-701.PubMedCrossRef
14.
go back to reference Katznelson R, Naughton F, Friedman Z, et al. Increased lung clearance of isoflurane shortens emergence in obesity: a prospective randomized-controlled trial. Acta Anaesthesiol Scand 2011; 55: 995-1001.PubMed Katznelson R, Naughton F, Friedman Z, et al. Increased lung clearance of isoflurane shortens emergence in obesity: a prospective randomized-controlled trial. Acta Anaesthesiol Scand 2011; 55: 995-1001.PubMed
15.
go back to reference Katznelson R, Minkovich L, Friedman Z, Fedorko L, Beattie WS, Fisher JA. Accelerated recovery from sevoflurane anesthesia with isocapnic hyperpnoea. Anesth Analg 2008; 106: 486-91.PubMedCrossRef Katznelson R, Minkovich L, Friedman Z, Fedorko L, Beattie WS, Fisher JA. Accelerated recovery from sevoflurane anesthesia with isocapnic hyperpnoea. Anesth Analg 2008; 106: 486-91.PubMedCrossRef
16.
go back to reference Fisher JA, Iscoe S, Fedorko L, Duffin J. Rapid elimination of CO through the lungs: coming full circle 100 years on. Exp Physiol 2011; 96: 1262-9.PubMedCentralPubMed Fisher JA, Iscoe S, Fedorko L, Duffin J. Rapid elimination of CO through the lungs: coming full circle 100 years on. Exp Physiol 2011; 96: 1262-9.PubMedCentralPubMed
17.
go back to reference Mandell DM, Han JS, Poublanc J, et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol 2011; 32: 721-7.PubMedCrossRef Mandell DM, Han JS, Poublanc J, et al. Quantitative measurement of cerebrovascular reactivity by blood oxygen level-dependent MR imaging in patients with intracranial stenosis: preoperative cerebrovascular reactivity predicts the effect of extracranial-intracranial bypass surgery. AJNR Am J Neuroradiol 2011; 32: 721-7.PubMedCrossRef
18.
go back to reference Han JS, Mikulis DJ, Mardimae A, et al. Measurement of cerebrovascular reactivity in pediatric patients with cerebral vasculopathy using blood oxygen level-dependent MRI. Stroke 2011; 42: 1261-9.PubMedCrossRef Han JS, Mikulis DJ, Mardimae A, et al. Measurement of cerebrovascular reactivity in pediatric patients with cerebral vasculopathy using blood oxygen level-dependent MRI. Stroke 2011; 42: 1261-9.PubMedCrossRef
19.
go back to reference Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill – too little of a good thing? Lancet 1999; 354: 1283-6.PubMedCrossRef Laffey JG, Kavanagh BP. Carbon dioxide and the critically ill – too little of a good thing? Lancet 1999; 354: 1283-6.PubMedCrossRef
20.
go back to reference Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994; 22: 1568-78.PubMedCrossRef Hickling KG, Walsh J, Henderson S, Jackson R. Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 1994; 22: 1568-78.PubMedCrossRef
21.
go back to reference Curley G, Hayes M, Laffey JG. Can “permissive” hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit Care 2011; 15: 212.PubMedCrossRef Curley G, Hayes M, Laffey JG. Can “permissive” hypercapnia modulate the severity of sepsis-induced ALI/ARDS? Crit Care 2011; 15: 212.PubMedCrossRef
22.
go back to reference Hickling KG, Joyce C. Permissive hypercapnia in ARDS and its effect on tissue oxygenation. Acta Anaesthesiol Scand Suppl 1995; 107: 201-8.PubMedCrossRef Hickling KG, Joyce C. Permissive hypercapnia in ARDS and its effect on tissue oxygenation. Acta Anaesthesiol Scand Suppl 1995; 107: 201-8.PubMedCrossRef
23.
go back to reference Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118: 1307-21.PubMedCrossRef Severgnini P, Selmo G, Lanza C, et al. Protective mechanical ventilation during general anesthesia for open abdominal surgery improves postoperative pulmonary function. Anesthesiology 2013; 118: 1307-21.PubMedCrossRef
24.
go back to reference Ward JP, McMurtry IF. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 2009; 9: 287-96.PubMedCentralPubMedCrossRef Ward JP, McMurtry IF. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol 2009; 9: 287-96.PubMedCentralPubMedCrossRef
25.
go back to reference Wang L, Yin J, Nickles HT, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 2012; 122: 4218-30.PubMedCentralPubMedCrossRef Wang L, Yin J, Nickles HT, et al. Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 2012; 122: 4218-30.PubMedCentralPubMedCrossRef
26.
go back to reference Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner WW Jr. Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 1997; 82: 1084-90.PubMed Hillier SC, Graham JA, Hanger CC, Godbey PS, Glenny RW, Wagner WW Jr. Hypoxic vasoconstriction in pulmonary arterioles and venules. J Appl Physiol 1997; 82: 1084-90.PubMed
27.
go back to reference Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2005; 288: L213-26.PubMedCrossRef Gao Y, Raj JU. Role of veins in regulation of pulmonary circulation. Am J Physiol Lung Cell Mol Physiol 2005; 288: L213-26.PubMedCrossRef
Metadata
Title
From the Journal archives: Understanding the mechanism(s) regulating hypoxic pulmonary vasoconstriction: how an early study has led to novel translational approaches
Authors
Neil M. Goldenberg, MD, PhD
Gregory M. T. Hare, MD, PhD
Publication date
01-02-2014
Publisher
Springer US
Published in
Canadian Journal of Anesthesia/Journal canadien d'anesthésie / Issue 2/2014
Print ISSN: 0832-610X
Electronic ISSN: 1496-8975
DOI
https://doi.org/10.1007/s12630-013-0086-5

Other articles of this Issue 2/2014

Canadian Journal of Anesthesia/Journal canadien d'anesthésie 2/2014 Go to the issue