Skip to main content
Top
Published in: The Cerebellum 2/2012

01-06-2012 | Review

From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum

Authors: Leonard F. Koziol, Deborah Ely Budding, Dana Chidekel

Published in: The Cerebellum | Issue 2/2012

Login to get access

Abstract

This paper posits that the brain evolved for the control of action rather than for the development of cognition per se. We note that the terms commonly used to describe brain–behavior relationships define, and in many ways limit, how we conceptualize and investigate them and may therefore constrain the questions we ask and the utility of the “answers” we generate. Many constructs are so nonspecific and over-inclusive as to be scientifically meaningless. “Executive function” is one such term in common usage. As the construct is increasingly focal in neuroscience research, defining it clearly is critical. We propose a definition that places executive function within a model of continuous sensorimotor interaction with the environment. We posit that control of behavior is the essence of “executive function,” and we explore the evolutionary advantage conferred by being able to anticipate and control behavior with both implicit and explicit mechanisms. We focus on the cerebellum's critical role in these control processes. We then hypothesize about the ways in which procedural (skill) learning contributes to the acquisition of declarative (semantic) knowledge. We hypothesize how these systems might interact in the process of grounding knowledge in sensorimotor anticipation, thereby directly linking movement to thought and “embodied cognition.” We close with a discussion of ways in which the cerebellum instructs frontal systems how to think ahead by providing anticipatory control mechanisms, and we briefly review this model's potential applications.
Literature
1.
go back to reference Cromwell HC, Panksepp J. Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev. 2011;35(9):2026–35.PubMedCrossRef Cromwell HC, Panksepp J. Rethinking the cognitive revolution from a neural perspective: how overuse/misuse of the term ‘cognition’ and the neglect of affective controls in behavioral neuroscience could be delaying progress in understanding the BrainMind. Neurosci Biobehav Rev. 2011;35(9):2026–35.PubMedCrossRef
2.
go back to reference van Schouwenburg MR, den Ouden HE, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30(29):9910–8.PubMedCrossRef van Schouwenburg MR, den Ouden HE, Cools R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J Neurosci. 2010;30(29):9910–8.PubMedCrossRef
3.
go back to reference Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9:499–529.PubMedCrossRef Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. Cerebellum. 2010;9:499–529.PubMedCrossRef
4.
go back to reference Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMedCrossRef Ito M. Movement and thought: identical control mechanisms by the cerebellum. Trends Neurosci. 1993;16(11):448–50.PubMedCrossRef
5.
go back to reference Loring DW, Meador KJ. INS dictionary of neuropsychology. USA: Oxford University Press; 1999. Loring DW, Meador KJ. INS dictionary of neuropsychology. USA: Oxford University Press; 1999.
6.
go back to reference Lezak MD, Loring DW. Neuropsychological assessment. USA: Oxford University Press; 2004. Lezak MD, Loring DW. Neuropsychological assessment. USA: Oxford University Press; 2004.
7.
go back to reference Gualtieri CT. The contribution of the frontal lobes to a theory of psychopathology. In: Ratey JJ, editor. Neuropsychiatry of personality disorders. Cambridge: Blackwell Science; 1995. p. 149–171. Gualtieri CT. The contribution of the frontal lobes to a theory of psychopathology. In: Ratey JJ, editor. Neuropsychiatry of personality disorders. Cambridge: Blackwell Science; 1995. p. 149–171.
8.
go back to reference Dubois B, Pillon B, McKeith IG. Parkinson's disease with and without dementia and lewy body dementia. In: Miller EK, Cummings JL, editors. The human frontal lobes: functions and disorders. New York: The Guilford Press; 2007. p. 472–504. Dubois B, Pillon B, McKeith IG. Parkinson's disease with and without dementia and lewy body dementia. In: Miller EK, Cummings JL, editors. The human frontal lobes: functions and disorders. New York: The Guilford Press; 2007. p. 472–504.
9.
go back to reference Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008. Miller R. A theory of the basal ganglia and their disorders. Boca Raton: CRC; 2008.
10.
go back to reference Haber SN, Rauch SL. Neurocircuitry: a window into the networks underlying neuropsychiatric disease. Neuropsychopharmacology. 2010;35(1):1–3.PubMedCrossRef Haber SN, Rauch SL. Neurocircuitry: a window into the networks underlying neuropsychiatric disease. Neuropsychopharmacology. 2010;35(1):1–3.PubMedCrossRef
11.
go back to reference Ardila A. On the evolutionary origins of executive functions. Brain Cognit. 2008;68(1):92–9.CrossRef Ardila A. On the evolutionary origins of executive functions. Brain Cognit. 2008;68(1):92–9.CrossRef
12.
go back to reference Zelazo PD, Qu L, Muller U. Hot and cool aspects of executive function: relations in early development. In: Schneider W, Schumann-Hengsteler R, Sodian B, editors. Young children's cognitive development: interrelationships among executive functioning, working memory, verbal ability, and theory of mind. Mahwah: Lawrence Erlbaum; 2005. p. 71–93. Zelazo PD, Qu L, Muller U. Hot and cool aspects of executive function: relations in early development. In: Schneider W, Schumann-Hengsteler R, Sodian B, editors. Young children's cognitive development: interrelationships among executive functioning, working memory, verbal ability, and theory of mind. Mahwah: Lawrence Erlbaum; 2005. p. 71–93.
13.
go back to reference Salloway S, Malloy P, Cummings JL. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997. Salloway S, Malloy P, Cummings JL. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997.
14.
go back to reference Frank MJ, O'Reilly RC, Curran T. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychol Sci. 2006;17(8):700–7.PubMedCrossRef Frank MJ, O'Reilly RC, Curran T. When memory fails, intuition reigns: midazolam enhances implicit inference in humans. Psychol Sci. 2006;17(8):700–7.PubMedCrossRef
15.
go back to reference Wan X, Nakatani H, Ueno K, Asamizuya T, Cheng K, Tanaka K. The neural basis of intuitive best next-move generation in board game experts. Science. 2011;331(6015):341.PubMedCrossRef Wan X, Nakatani H, Ueno K, Asamizuya T, Cheng K, Tanaka K. The neural basis of intuitive best next-move generation in board game experts. Science. 2011;331(6015):341.PubMedCrossRef
16.
go back to reference Manrique HM, Call J. Spontaneous use of tools as straws in great apes. Anim Cognit 2011;14(2):213–26. Manrique HM, Call J. Spontaneous use of tools as straws in great apes. Anim Cognit 2011;14(2):213–26.
17.
go back to reference Cantalupo C, Hopkins W. The cerebellum and its contribution to complex tasks in higher primates: a comparative perspective. Cortex. 2010;46(7):821–30.PubMedCrossRef Cantalupo C, Hopkins W. The cerebellum and its contribution to complex tasks in higher primates: a comparative perspective. Cortex. 2010;46(7):821–30.PubMedCrossRef
19.
go back to reference Pezzulo G. Coordinating with the future: the anticipatory nature of representation. Minds and Machines. 2008;18(2):179–225.CrossRef Pezzulo G. Coordinating with the future: the anticipatory nature of representation. Minds and Machines. 2008;18(2):179–225.CrossRef
20.
go back to reference Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114. Pezzulo G. Grounding procedural and declarative knowledge in sensorimotor anticipation. Mind Lang. 2011;26(1):78–114.
21.
go back to reference Piaget J, Inhelder B. The psychology of the child. 1972. Piaget J, Inhelder B. The psychology of the child. 1972.
22.
go back to reference Barsalou LW. Grounded cognition: past, present, and future. Top Cogn Sci. 2010;2(3):322–7.CrossRef Barsalou LW. Grounded cognition: past, present, and future. Top Cogn Sci. 2010;2(3):322–7.CrossRef
23.
go back to reference Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12(8):1062–8.PubMedCrossRef Frank MJ, Doll BB, Oas-Terpstra J, Moreno F. Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. Nat Neurosci. 2009;12(8):1062–8.PubMedCrossRef
24.
go back to reference Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.PubMedCrossRef Baddeley A. The central executive: a concept and some misconceptions. J Int Neuropsychol Soc. 1998;4(5):523–6.PubMedCrossRef
25.
go back to reference Isoda M, Hikosaka O. Cortico basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors. Eur J Neurosci. 2011;33(11):2058–69.PubMedCrossRef Isoda M, Hikosaka O. Cortico basal ganglia mechanisms for overcoming innate, habitual and motivational behaviors. Eur J Neurosci. 2011;33(11):2058–69.PubMedCrossRef
26.
go back to reference Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.PubMedCrossRef Houk JC, Bastianen C, Fansler D, Fishbach A, Fraser D, Reber PJ, et al. Action selection and refinement in subcortical loops through basal ganglia and cerebellum. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1573–83.PubMedCrossRef
27.
go back to reference Bargh JA, Chartrand TL. The unbearable automaticity of being. Amer Psychol. 1999;54:462–79CrossRef Bargh JA, Chartrand TL. The unbearable automaticity of being. Amer Psychol. 1999;54:462–79CrossRef
28.
go back to reference Bargh JA. The automaticity of everyday life. Wyer, Robert S Jr (Ed), et al. (1997). The automaticity of everyday life: Advances in social cognition, Vol. 10. (pp. 1-61). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. , Publishers. viii; 1997. 258 pp Bargh JA. The automaticity of everyday life. Wyer, Robert S Jr (Ed), et al. (1997). The automaticity of everyday life: Advances in social cognition, Vol. 10. (pp. 1-61). Mahwah, NJ, USA: Lawrence Erlbaum Associates, Inc. , Publishers. viii; 1997. 258 pp
29.
go back to reference Lakoff G, Johnson M. Philosophy in the flesh. 77th ed. New York: Basic Books; 1999. Lakoff G, Johnson M. Philosophy in the flesh. 77th ed. New York: Basic Books; 1999.
30.
go back to reference Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedCrossRef Saling LL, Phillips JG. Automatic behaviour: efficient not mindless. Brain Res Bull. 2007;73(1–3):1–20.PubMedCrossRef
31.
go back to reference Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMedCrossRef Imamizu H, Kawato M. Brain mechanisms for predictive control by switching internal models: implications for higher-order cognitive functions. Psychol Res. 2009;73(4):527–44.PubMedCrossRef
32.
go back to reference Imamizu H. Prediction of sensorimotor feedback from the efference copy of motor commands: a review of behavioral and functional neuroimaging studies. Jpn Psychol Res. 2010;52(2):107–20.CrossRef Imamizu H. Prediction of sensorimotor feedback from the efference copy of motor commands: a review of behavioral and functional neuroimaging studies. Jpn Psychol Res. 2010;52(2):107–20.CrossRef
33.
go back to reference Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef Shadmehr R, Smith MA, Krakauer JW. Error correction, sensory prediction, and adaptation in motor control. Annu Rev Neurosci. 2010;33:89–108.PubMedCrossRef
34.
go back to reference Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedCrossRef Cisek P, Kalaska JF. Neural mechanisms for interacting with a world full of action choices. Annu Rev Neurosci. 2010;33:269–98.PubMedCrossRef
35.
go back to reference Shadlen MN, Movshon JA. Synchrony unbound: review a critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.PubMedCrossRef Shadlen MN, Movshon JA. Synchrony unbound: review a critical evaluation of the temporal binding hypothesis. Neuron. 1999;24:67–77.PubMedCrossRef
36.
37.
go back to reference Stout D. The evolution of cognitive control. Top Cogn Sci. 2010;2(4):614–30.CrossRef Stout D. The evolution of cognitive control. Top Cogn Sci. 2010;2(4):614–30.CrossRef
38.
go back to reference Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.PubMedCrossRef Bloedel JR, Bracha V. Duality of cerebellar motor and cognitive functions. Int Rev Neurobiol. 1997;41:613.PubMedCrossRef
39.
go back to reference Hazy TE, Frank MJ, O'Reilly RC. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1601–13.PubMedCrossRef Hazy TE, Frank MJ, O'Reilly RC. Towards an executive without a homunculus: computational models of the prefrontal cortex/basal ganglia system. Philos Trans R Soc Lond B Biol Sci. 2007;362(1485):1601–13.PubMedCrossRef
40.
go back to reference Frank MJ, Loughry B, O'Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognit Affect Behav Neurosci. 2001;1(2):137–60.CrossRef Frank MJ, Loughry B, O'Reilly RC. Interactions between frontal cortex and basal ganglia in working memory: a computational model. Cognit Affect Behav Neurosci. 2001;1(2):137–60.CrossRef
41.
go back to reference Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev. 2010;117(2):541.PubMedCrossRef Stocco A, Lebiere C, Anderson JR. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination. Psychol Rev. 2010;117(2):541.PubMedCrossRef
42.
go back to reference Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef Ito M. Control of mental activities by internal models in the cerebellum. Nat Rev Neurosci. 2008;9(4):304–13.PubMedCrossRef
44.
45.
46.
go back to reference Valyear KF, Chapman CS, Gallivan JP, Mark RS, Culham JC. To use or to move: goal-set modulates priming when grasping real tools. Exp Brain Res 2011;212(1):125–42 Valyear KF, Chapman CS, Gallivan JP, Mark RS, Culham JC. To use or to move: goal-set modulates priming when grasping real tools. Exp Brain Res 2011;212(1):125–42
47.
go back to reference Hendriks-Jansen H. Catching ourselves in the act: situated activity, interactive emergence, evolution, and human thought. Cambridge: MIT; 1996. Hendriks-Jansen H. Catching ourselves in the act: situated activity, interactive emergence, evolution, and human thought. Cambridge: MIT; 1996.
48.
go back to reference Freeman JB, Ambady N. A dynamic interactive theory of person construal. Psychol Rev. 2011;118(2):247.PubMedCrossRef Freeman JB, Ambady N. A dynamic interactive theory of person construal. Psychol Rev. 2011;118(2):247.PubMedCrossRef
49.
go back to reference Ito M. The cerebellum: brain for an implicit self. Upper Saddle River: FT Press; 2011. Ito M. The cerebellum: brain for an implicit self. Upper Saddle River: FT Press; 2011.
50.
go back to reference Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35. Heilman KM, Rothi LJG. Apraxia. In: Heilman KM, Valenstein E, editors. Clinical neuropsychology. 4th ed. New York: Oxford University Press; 2003. p. 215–35.
52.
go back to reference Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5. Pezzulo G, Barsalou LW, Cangelosi A, Fischer MH, McRae K, Spivey MJ. The mechanics of embodiment: a dialog on embodiment and computational modeling. Front Psychol. 2011;2:5.
53.
54.
go back to reference Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 157–86. Njiokiktjien C. Developmental dyspraxias: assessment and differential diagnosis. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 157–86.
55.
go back to reference Kaldy, Leslie AM. Identification of objects in 9 month old infants: integrating “what” and “where” information. Dev Sci. 2003;6(3):360–73.CrossRef Kaldy, Leslie AM. Identification of objects in 9 month old infants: integrating “what” and “where” information. Dev Sci. 2003;6(3):360–73.CrossRef
56.
go back to reference Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.CrossRef Doll BB, Frank MJ. The basal ganglia in reward and decision making: computational models and empirical studies. Handbook of Reward and Decision Making. 2009;399:399–425.CrossRef
57.
go back to reference Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.PubMedCrossRef Sheth SA, Abuelem T, Gale JT, Eskandar EN. Basal ganglia neurons dynamically facilitate exploration during associative learning. J Neurosci. 2011;31(13):4878.PubMedCrossRef
58.
go back to reference Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. NeuroReport. 2007;18(10):951.PubMedCrossRef Heekeren HR, Wartenburger I, Marschner A, Mell T, Villringer A, Reischies FM. Role of ventral striatum in reward-based decision making. NeuroReport. 2007;18(10):951.PubMedCrossRef
59.
go back to reference Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26(32):8368–76.PubMedCrossRef Haber SN, Kim KS, Mailly P, Calzavara R. Reward-related cortical inputs define a large striatal region in primates that interface with associative cortical connections, providing a substrate for incentive-based learning. J Neurosci. 2006;26(32):8368–76.PubMedCrossRef
60.
go back to reference Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.PubMedCrossRef Cisek P, Kalaska JF. Neural correlates of reaching decisions in dorsal premotor cortex: specification of multiple direction choices and final selection of action. Neuron. 2005;45(5):801–14.PubMedCrossRef
61.
go back to reference Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12. Thach WT. Context-response linkage. In: Schmahmann J, editor. The cerebellum and cognition. San Diego: Academic; 1997. p. 600–12.
62.
go back to reference Kinsbourne M, Jordan JS. Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 2009;46(2):103–26.CrossRef Kinsbourne M, Jordan JS. Embodied anticipation: a neurodevelopmental interpretation. Discourse Process. 2009;46(2):103–26.CrossRef
63.
go back to reference Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMedCrossRef Smaers JB, Steele J, Zilles K. Modeling the evolution of cortico cerebellar systems in primates. Ann NY Acad Sci. 2011;1225(1):176–90.PubMedCrossRef
64.
65.
go back to reference Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443.PubMedCrossRef Leiner HC, Leiner AL, Dow RS. Does the cerebellum contribute to mental skills? Behav Neurosci. 1986;100(4):443.PubMedCrossRef
66.
go back to reference Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52.PubMedCrossRef Balsters JH, Cussans E, Diedrichsen J, Phillips KA, Preuss TM, Rilling JK, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52.PubMedCrossRef
67.
go back to reference Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMedCrossRef Ramnani N, Behrens TE, Johansen-Berg H, Richter MC, Pinsk MA, Andersson JL, et al. The evolution of prefrontal inputs to the cortico-pontine system: diffusion imaging evidence from Macaque monkeys and humans. Cereb Cortex. 2006;16(6):811–8.PubMedCrossRef
68.
go back to reference Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef Middleton FA, Strick PL. Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Res Brain Res Rev. 2000;31(2–3):236–50.PubMedCrossRef
69.
go back to reference Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMed Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.PubMed
70.
71.
go back to reference Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2011 (in press) Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum 2011 (in press)
72.
go back to reference Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.PubMedCrossRef Baillieux H, De Smet HJ, Paquier PF, De Deyn PP, Marien P. Cerebellar neurocognition: insights into the bottom of the brain. Clin Neurol Neurosurg. 2008;110(8):763–73.PubMedCrossRef
73.
go back to reference Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. NeuroImage. 2008;43(2):388–98.PubMedCrossRef Balsters JH, Ramnani N. Symbolic representations of action in the human cerebellum. NeuroImage. 2008;43(2):388–98.PubMedCrossRef
74.
go back to reference Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedCrossRef Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.PubMedCrossRef
75.
go back to reference Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.PubMed Herculano-Houzel S. Coordinated scaling of cortical and cerebellar numbers of neurons. Front Neuroanat. 2010;4:12.PubMed
76.
go back to reference Shadmehr R, de Xivry JJ Orban, Xu-Wilson M, Shih TY. Temporal discounting of reward and the cost of time in motor control. J Neurosci. 2010;30(31):10507–16.PubMedCrossRef Shadmehr R, de Xivry JJ Orban, Xu-Wilson M, Shih TY. Temporal discounting of reward and the cost of time in motor control. J Neurosci. 2010;30(31):10507–16.PubMedCrossRef
77.
go back to reference Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef Ito M. Bases and implications of learning in the cerebellum—adaptive control and internal model mechanism. Prog Brain Res. 2005;148:95–109.PubMedCrossRef
78.
go back to reference Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99(2):1017.PubMedCrossRef Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci USA. 2002;99(2):1017.PubMedCrossRef
79.
go back to reference Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebr Cortex 2010;21(8):1761–70 Galea JM, Vazquez A, Pasricha N, Orban de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cerebr Cortex 2010;21(8):1761–70
80.
go back to reference Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMedCrossRef Kawato M, Furukawa K, Suzuki R. A hierarchical neural-network model for control and learning of voluntary movement. Biol Cybern. 1987;57(3):169–85.PubMedCrossRef
81.
go back to reference Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.PubMedCrossRef Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501.PubMedCrossRef
82.
go back to reference Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4(4):e5101.PubMedCrossRef Granziera C, Schmahmann JD, Hadjikhani N, Meyer H, Meuli R, Wedeen V, et al. Diffusion spectrum imaging shows the structural basis of functional cerebellar circuits in the human cerebellum in vivo. PLoS One. 2009;4(4):e5101.PubMedCrossRef
83.
go back to reference Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedCrossRef Glickstein M, Sultan F, Voogd J. Functional localization in the cerebellum. Cortex. 2011;47(1):59–80.PubMedCrossRef
84.
go back to reference Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRef Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.PubMedCrossRef
85.
go back to reference Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7(3):304–13.PubMedCrossRef Hu D, Shen H, Zhou Z. Functional asymmetry in the cerebellum: a brief review. Cerebellum. 2008;7(3):304–13.PubMedCrossRef
86.
87.
go back to reference Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.PubMedCrossRef Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89(1):634–9.PubMedCrossRef
88.
go back to reference Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54(4):2612–22.PubMedCrossRef Kuper M, Dimitrova A, Thurling M, Maderwald S, Roths J, Elles HG, et al. Evidence for a motor and a non-motor domain in the human dentate nucleus—an fMRI study. NeuroImage. 2011;54(4):2612–22.PubMedCrossRef
89.
go back to reference Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage 2011 (in press) uncorrected proof Thurling M, Kuper M, Stefanescu R, Maderwald S, Gizewski ER, Ladd ME, et al. Activation of the dentate nucleus in a verb generation task: a 7T MRI study. Neuroimage 2011 (in press) uncorrected proof
91.
go back to reference Ambrose SH. Coevolution of composite-tool technology, constructive memory, and language: implications for the evolution of modern human behavior. Curr Anthropol. 2010;51(S1):S135–47. Ambrose SH. Coevolution of composite-tool technology, constructive memory, and language: implications for the evolution of modern human behavior. Curr Anthropol. 2010;51(S1):S135–47.
92.
go back to reference Stout D, Chaminade T. Making tools and making sense: complex, intentional behaviour in human evolution. Camb Archaeol J. 2009;19(01):85–96.CrossRef Stout D, Chaminade T. Making tools and making sense: complex, intentional behaviour in human evolution. Camb Archaeol J. 2009;19(01):85–96.CrossRef
93.
go back to reference Langbroek M. Trees and ladders: a critique of the theory of human cognitive and behavioural evolution in Palaeolithic archaeology. Quaternary International, (in press) corrected proof Langbroek M. Trees and ladders: a critique of the theory of human cognitive and behavioural evolution in Palaeolithic archaeology. Quaternary International, (in press) corrected proof
94.
go back to reference Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cognit Sci. 2004;8(2):71–8.CrossRef Johnson-Frey SH. The neural bases of complex tool use in humans. Trends Cognit Sci. 2004;8(2):71–8.CrossRef
95.
go back to reference Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebr Cortex. 2009;19(10):2485–97.CrossRef Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cerebr Cortex. 2009;19(10):2485–97.CrossRef
96.
go back to reference Imamizu H. Learning and switching of internal models for dexterous tool use. In: Danion F, Latash M, editors. Motor control: theories, experiments, and applications. New York: Oxford Press; 2011. p. 245–266. Imamizu H. Learning and switching of internal models for dexterous tool use. In: Danion F, Latash M, editors. Motor control: theories, experiments, and applications. New York: Oxford Press; 2011. p. 245–266.
97.
go back to reference Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedCrossRef Imamizu H, Kuroda T, Miyauchi S, Yoshioka T, Kawato M. Modular organization of internal models of tools in the human cerebellum. Proc Natl Acad Sci USA. 2003;100(9):5461–6.PubMedCrossRef
98.
go back to reference Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMedCrossRef Higuchi S, Imamizu H, Kawato M. Cerebellar activity evoked by common tool-use execution and imagery tasks: an fMRI study. Cortex. 2007;43(3):350–8.PubMedCrossRef
99.
go back to reference Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMedCrossRef Imamizu H, Kawato M. Neural correlates of predictive and postdictive switching mechanisms for internal models. J Neurosci. 2008;28(42):10751.PubMedCrossRef
100.
go back to reference Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMedCrossRef Imamizu H, Kuroda T, Yoshioka T, Kawato M. Functional magnetic resonance imaging examination of two modular architectures for switching multiple internal models. J Neurosci. 2004;24(5):1173–81.PubMedCrossRef
101.
go back to reference Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Front Neurosci. 2010, 3:18. Dias-Ferreira E, Sousa N, Costa RM. Frontocerebellar connectivity: climbing through the inferior olive. Front Neurosci. 2010, 3:18.
102.
go back to reference Depue BE, Burgess GC, Willcutt EG, Bidwell L, Ruzic L, Banich MT. Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatr Res Neuroimaging. 2010;182(2):96–102.CrossRef Depue BE, Burgess GC, Willcutt EG, Bidwell L, Ruzic L, Banich MT. Symptom-correlated brain regions in young adults with combined-type ADHD: their organization, variability, and relation to behavioral performance. Psychiatr Res Neuroimaging. 2010;182(2):96–102.CrossRef
103.
go back to reference Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1178–84.PubMedCrossRef Durston S, van Belle J, de Zeeuw P. Differentiating frontostriatal and fronto-cerebellar circuits in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2011;69(12):1178–84.PubMedCrossRef
104.
go back to reference Svensson H, Ziemke T. Embodied representation: what are the issues. In: Bara B, Barsalou L, Buccarelli E, editors. Proceedings of the 27th annual meeting of the Cognitive Science Society. NJ: Lawrence Erlbaum; 2005. p. 2116–2121. Svensson H, Ziemke T. Embodied representation: what are the issues. In: Bara B, Barsalou L, Buccarelli E, editors. Proceedings of the 27th annual meeting of the Cognitive Science Society. NJ: Lawrence Erlbaum; 2005. p. 2116–2121.
105.
go back to reference Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRef Squire LR. Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem. 2004;82(3):171–7.PubMedCrossRef
106.
go back to reference Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Moyano JC, Myers C, et al. Interactive memory systems in the human brain. Synthesis. 2001;52:297–314. Poldrack RA, Clark J, Pare-Blagoev EJ, Shohamy D, Moyano JC, Myers C, et al. Interactive memory systems in the human brain. Synthesis. 2001;52:297–314.
107.
go back to reference Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Network. 1999;12(7–8):961–74.CrossRef Doya K. What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? Neural Network. 1999;12(7–8):961–74.CrossRef
108.
go back to reference Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci. 2005;8(11):1491–3.PubMedCrossRef
109.
go back to reference Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6.PubMedCrossRef Bostan AC, Dum RP, Strick PL. The basal ganglia communicate with the cerebellum. Proc Natl Acad Sci USA. 2010;107(18):8452–6.PubMedCrossRef
110.
go back to reference Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.PubMedCrossRef Rogers TD, Dickson PE, Heck DH, Goldowitz D, Mittleman G, Blaha CD. Connecting the dots of the cerebro-cerebellar role in cognitive function: neuronal pathways for cerebellar modulation of dopamine release in the prefrontal cortex. Synapse. 2011;65(11):1204–12.PubMedCrossRef
111.
go back to reference Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(02):187–202.CrossRef Jeannerod M. The representing brain: neural correlates of motor intention and imagery. Behav Brain Sci. 1994;17(02):187–202.CrossRef
112.
go back to reference Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14(1):S103–9.PubMedCrossRef Jeannerod M. Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage. 2001;14(1):S103–9.PubMedCrossRef
113.
go back to reference Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49(7):1863–9.PubMedCrossRef Wadsworth HM, Kana RK. Brain mechanisms of perceiving tools and imagining tool use acts: a functional MRI study. Neuropsychologia. 2011;49(7):1863–9.PubMedCrossRef
114.
115.
go back to reference Hotz-Boendermaker S, Hepp-Reymond MC, Curt A, Kollias SS. Movement observation activates lower limb motor networks in chronic complete paraplegia. Neurorehabil Neural Repair. 2011;25(5):469.PubMedCrossRef Hotz-Boendermaker S, Hepp-Reymond MC, Curt A, Kollias SS. Movement observation activates lower limb motor networks in chronic complete paraplegia. Neurorehabil Neural Repair. 2011;25(5):469.PubMedCrossRef
116.
go back to reference Johnson-Frey SH, Newman-Norland R, Grafton ST. A distributed network in the left cerebral hemisphere for planning everyday tool use actions. Cerebr Cortex. 2005;15(6):681–95.CrossRef Johnson-Frey SH, Newman-Norland R, Grafton ST. A distributed network in the left cerebral hemisphere for planning everyday tool use actions. Cerebr Cortex. 2005;15(6):681–95.CrossRef
117.
go back to reference Zola SM. The neurobiology of recovered memory. In: Salloway SP, Malloy PF, Cummings JL, editors. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997. p. 143–54. Zola SM. The neurobiology of recovered memory. In: Salloway SP, Malloy PF, Cummings JL, editors. The neuropsychiatry of limbic and subcortical disorders. Washington: American Psychiatric Press; 1997. p. 143–54.
118.
go back to reference Raj V, Bell MA. Cognitive processes supporting episodic memory formation in childhood: the role of source memory, binding, and executive functioning. Dev Rev. 2010;30(4):384–402.CrossRef Raj V, Bell MA. Cognitive processes supporting episodic memory formation in childhood: the role of source memory, binding, and executive functioning. Dev Rev. 2010;30(4):384–402.CrossRef
119.
go back to reference Bachevalier J, Malkova L, Beauregard M. Multiple memory systems: a neuropsychological and developmental perspective. In: Lyon GR, Krasnegor NA, editors. Attention, memory, and executive function. Baltimore: Brookes; 1996. p. 185–198. Bachevalier J, Malkova L, Beauregard M. Multiple memory systems: a neuropsychological and developmental perspective. In: Lyon GR, Krasnegor NA, editors. Attention, memory, and executive function. Baltimore: Brookes; 1996. p. 185–198.
120.
go back to reference Hayne H, Imuta K. Episodic memory in 3- and 4-year-old children. Dev Psychobiol. 2011;53(3):317–22.PubMedCrossRef Hayne H, Imuta K. Episodic memory in 3- and 4-year-old children. Dev Psychobiol. 2011;53(3):317–22.PubMedCrossRef
121.
go back to reference Poore MA, Barlow SM. Suck predicts neuromotor integrity and developmental outcomes. Perspect Speech Sci Orofacial Disord. 2009;19(1):44.CrossRef Poore MA, Barlow SM. Suck predicts neuromotor integrity and developmental outcomes. Perspect Speech Sci Orofacial Disord. 2009;19(1):44.CrossRef
122.
go back to reference Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci. 2008;27(5):668–81.PubMedCrossRef Piek JP, Dawson L, Smith LM, Gasson N. The role of early fine and gross motor development on later motor and cognitive ability. Hum Mov Sci. 2008;27(5):668–81.PubMedCrossRef
123.
go back to reference Westendorp M, Hartman E, Houwen S, Smith J, Visscher C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in developmental disabilities (in press) corrected proof; 2011. Westendorp M, Hartman E, Houwen S, Smith J, Visscher C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Research in developmental disabilities (in press) corrected proof; 2011.
124.
go back to reference Largo RH, Fischer JE, Rousson V. Neuromotor development from kindergarten age to adolescence: developmental course and variability. Swiss Med Wkly. 2003;133(13/14):193–9.PubMed Largo RH, Fischer JE, Rousson V. Neuromotor development from kindergarten age to adolescence: developmental course and variability. Swiss Med Wkly. 2003;133(13/14):193–9.PubMed
125.
go back to reference Gibson KR. Evolution of human intelligence: the roles of brain size and mental construction. Brain Behav Evol. 2002;59(1–2):10–20.PubMedCrossRef Gibson KR. Evolution of human intelligence: the roles of brain size and mental construction. Brain Behav Evol. 2002;59(1–2):10–20.PubMedCrossRef
126.
go back to reference Blumenfeld H. Neuroanatomy through clinical cases. Sinauer Associates; 2002. Blumenfeld H. Neuroanatomy through clinical cases. Sinauer Associates; 2002.
127.
128.
go back to reference Von Hofsten C. Action, the foundation for cognitive development. Scand J Psychol. 2009;50(6):617–23.CrossRef Von Hofsten C. Action, the foundation for cognitive development. Scand J Psychol. 2009;50(6):617–23.CrossRef
129.
go back to reference Lockman JJ. A perception-action perspective on tool use development. Child Dev. 2000;71(1):137–44.PubMedCrossRef Lockman JJ. A perception-action perspective on tool use development. Child Dev. 2000;71(1):137–44.PubMedCrossRef
130.
go back to reference Tomasello M, Carpenter M, Liszkowski U. A new look at infant pointing. Child Dev. 2007;78(3):705–22.PubMedCrossRef Tomasello M, Carpenter M, Liszkowski U. A new look at infant pointing. Child Dev. 2007;78(3):705–22.PubMedCrossRef
131.
go back to reference Want SC, Harris PL. Learning from other people's mistakes: causal understanding in learning to use a tool. Child Dev. 2001;72(2):431–43.PubMedCrossRef Want SC, Harris PL. Learning from other people's mistakes: causal understanding in learning to use a tool. Child Dev. 2001;72(2):431–43.PubMedCrossRef
132.
go back to reference Piek JP. Infant motor development. Human Kinetics Publishers; 2006. Piek JP. Infant motor development. Human Kinetics Publishers; 2006.
133.
go back to reference Von Hofsten C. An action perspective on motor development. Trends Cogn Sci. 2004;8(6):266–72.CrossRef Von Hofsten C. An action perspective on motor development. Trends Cogn Sci. 2004;8(6):266–72.CrossRef
134.
go back to reference Adolph KE, Berger SA. Motor development. In: Damon W, Lerner R, series editors; and Kuhn D, Siegler S, volume editors. Handbook of child psychology: Vol 2: Cognition, perception, and language (6th ed.) New York: Wiley; 2006. p. 161–213. Adolph KE, Berger SA. Motor development. In: Damon W, Lerner R, series editors; and Kuhn D, Siegler S, volume editors. Handbook of child psychology: Vol 2: Cognition, perception, and language (6th ed.) New York: Wiley; 2006. p. 161–213.
135.
go back to reference Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009. Koziol LF, Budding DE. Subcortical structures and cognition: implications for neuropsychological assessment. New York: Springer; 2009.
136.
go back to reference Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol. 2001;64(1):1–33.PubMedCrossRef Cotterill RM. Cooperation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: possible implications for cognition, consciousness, intelligence and creativity. Prog Neurobiol. 2001;64(1):1–33.PubMedCrossRef
137.
go back to reference Hazy TE, Frank MJ, O'Reilly RC. Banishing the homunculus: making working memory work. Neuroscience. 2006;139(1):105–18.PubMedCrossRef Hazy TE, Frank MJ, O'Reilly RC. Banishing the homunculus: making working memory work. Neuroscience. 2006;139(1):105–18.PubMedCrossRef
138.
go back to reference Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMedCrossRef Houk JC, Wise SP. Distributed modular architectures linking basal ganglia, cerebellum, and cerebral cortex: their role in planning and controlling action. Cereb Cortex. 1995;5(2):95–110.PubMedCrossRef
139.
go back to reference Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11. Imamizu H, Kawato M. Cerebellar internal models: implications for the dexterous use of tools. Cerebellum. 2010;22:1–11.
140.
go back to reference Milner TE, Franklin DW, Imamizu H, Kawato M. Central control of grasp: manipulation of objects with complex and simple dynamics. NeuroImage. 2007;36(2):388–95.PubMedCrossRef Milner TE, Franklin DW, Imamizu H, Kawato M. Central control of grasp: manipulation of objects with complex and simple dynamics. NeuroImage. 2007;36(2):388–95.PubMedCrossRef
141.
go back to reference Schultz J, Imamizu H, Kawato M, Frith CD. Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci. 2004;16(10):1695–705.PubMedCrossRef Schultz J, Imamizu H, Kawato M, Frith CD. Activation of the human superior temporal gyrus during observation of goal attribution by intentional objects. J Cogn Neurosci. 2004;16(10):1695–705.PubMedCrossRef
142.
go back to reference Panksepp J. Affective neuroscience: the foundations of human and animal emotions. USA: Oxford University Press; 2004. Panksepp J. Affective neuroscience: the foundations of human and animal emotions. USA: Oxford University Press; 2004.
143.
go back to reference De Quiros JB, Schrager, OL. Neuropsychological fundamentals in learning disabilities. Novato, CA: Academic Therapy; 1979. De Quiros JB, Schrager, OL. Neuropsychological fundamentals in learning disabilities. Novato, CA: Academic Therapy; 1979.
144.
go back to reference Rorke LB, Riggs HE. Myelination of the brain in the newborn. Philadelphia: Lippincott; 1969. Rorke LB, Riggs HE. Myelination of the brain in the newborn. Philadelphia: Lippincott; 1969.
145.
go back to reference Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human functional brain networks. Neuron. 2010;67(5):735–48.PubMedCrossRef Power JD, Fair DA, Schlaggar BL, Petersen SE. The development of human functional brain networks. Neuron. 2010;67(5):735–48.PubMedCrossRef
146.
go back to reference Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturationh of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Boston: Blackwell Scientific; 1967. p. 3–70. Yakovlev PI, Lecours AR. The myelogenetic cycles of regional maturationh of the brain. In: Minkowski A, editor. Regional development of the brain in early life. Boston: Blackwell Scientific; 1967. p. 3–70.
147.
go back to reference Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure, and functions. Boca Raton: CRC; 1997. Altman J, Bayer SA. Development of the cerebellar system: in relation to its evolution, structure, and functions. Boca Raton: CRC; 1997.
148.
go back to reference Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34.PubMedCrossRef Giedd JN, Rapoport JL. Structural MRI of pediatric brain development: what have we learned and where are we going? Neuron. 2010;67(5):728–34.PubMedCrossRef
149.
go back to reference Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH. Motor “Dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex 2011 (in press) Barber AD, Srinivasan P, Joel SE, Caffo BS, Pekar JJ, Mostofsky SH. Motor “Dexterity”?: evidence that left hemisphere lateralization of motor circuit connectivity is associated with better motor performance in children. Cerebral Cortex 2011 (in press)
150.
go back to reference Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.PubMedCrossRef Petrini JR, Dias T, McCormick MC, Massolo ML, Green NS, Escobar GJ. Increased risk of adverse neurological development for late preterm infants. J Pediatr. 2009;154(2):169–76.PubMedCrossRef
151.
go back to reference Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.PubMedCrossRef Bhutta AT, Cleves MA, Casey PH, Cradock MM, Anand KJ. Cognitive and behavioral outcomes of school-aged children who were born preterm: a meta-analysis. JAMA. 2002;288(6):728–37.PubMedCrossRef
152.
go back to reference Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 133–44. Riva D, Vago C, Usilla A, Treccani C, Pantaleoni C, D'Arrigo S, et al. The role of the cerebellum in higher cognitive and social functions in congenital and acquired diseases of developmental age. In: Riva D, Njiokiktjien C, editors. Brain lesion localization and developmental functions. Montrouge: John Libbey Eurotext; 2010. p. 133–44.
153.
go back to reference Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef Limperopoulos C, Soul JS, Haidar H, Huppi PS, Bassan H, Warfield SK, et al. Impaired trophic interactions between the cerebellum and the cerebrum among preterm infants. Pediatrics. 2005;116(4):844–50.PubMedCrossRef
154.
go back to reference Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.PubMed Messerschmidt A, Brugger PC, Boltshauser E, Zoder G, Sterniste W, Birnbacher R, et al. Disruption of cerebellar development: potential complication of extreme prematurity. AJNR Am J Neuroradiol. 2005;26(7):1659–67.PubMed
155.
go back to reference Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.PubMedCrossRef Allin M, Matsumoto H, Santhouse AM, Nosarti C, AlAsady MH, Stewart AL, et al. Cognitive and motor function and the size of the cerebellum in adolescents born very pre-term. Brain. 2001;124(Pt 1):60–6.PubMedCrossRef
156.
go back to reference Allin MP, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport. 2005;16(16):1821–4.PubMedCrossRef Allin MP, Salaria S, Nosarti C, Wyatt J, Rifkin L, Murray RM. Vermis and lateral lobes of the cerebellum in adolescents born very preterm. NeuroReport. 2005;16(16):1821–4.PubMedCrossRef
157.
go back to reference Herbert JS, Eckerman CO, Goldstein RF, Stanton ME. Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy. 2004;5(3):367–83.CrossRef Herbert JS, Eckerman CO, Goldstein RF, Stanton ME. Contrasts in infant classical eyeblink conditioning as a function of premature birth. Infancy. 2004;5(3):367–83.CrossRef
158.
go back to reference Kessenich M. Developmental outcomes of premature, low birth weight, and medically fragile infants. Newborn and Infant Nurs Rev. 2003;3(3):80–7.CrossRef Kessenich M. Developmental outcomes of premature, low birth weight, and medically fragile infants. Newborn and Infant Nurs Rev. 2003;3(3):80–7.CrossRef
159.
go back to reference Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.PubMedCrossRef Volpe JJ. Cerebellum of the premature infant: rapidly developing, vulnerable, clinically important. J Child Neurol. 2009;24(9):1085–104.PubMedCrossRef
160.
go back to reference Tanskanen P, Valkama M, Haapea M, Barnes A, Ridler K, Miettunen J, et al. Is prematurity associated with adult cognitive outcome and brain structure? Pediatr Neurol. 2011;44(1):12–20.PubMedCrossRef Tanskanen P, Valkama M, Haapea M, Barnes A, Ridler K, Miettunen J, et al. Is prematurity associated with adult cognitive outcome and brain structure? Pediatr Neurol. 2011;44(1):12–20.PubMedCrossRef
161.
go back to reference Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, et al. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One. 2011;6(8):e23449.PubMedCrossRef Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, et al. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One. 2011;6(8):e23449.PubMedCrossRef
162.
go back to reference Connolly KJ, Dalgleish M. Individual patterns of tool use by infants. In: Kalverboer AF, Hopkins B, Geuze R, editors. Motor development in early and later childhood: longitudinal approaches. Cambridge: Cambridge University Press; 1993; p. 174–204.CrossRef Connolly KJ, Dalgleish M. Individual patterns of tool use by infants. In: Kalverboer AF, Hopkins B, Geuze R, editors. Motor development in early and later childhood: longitudinal approaches. Cambridge: Cambridge University Press; 1993; p. 174–204.CrossRef
163.
go back to reference Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum 2010;1–19. Voogd J, Schraa-Tam CKL, van der Geest JN, De Zeeuw CI. Visuomotor cerebellum in human and nonhuman primates. Cerebellum 2010;1–19.
164.
go back to reference Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153(2):239–45.PubMedCrossRef Blakemore SJ, Sirigu A. Action prediction in the cerebellum and in the parietal lobe. Exp Brain Res. 2003;153(2):239–45.PubMedCrossRef
165.
go back to reference Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.PubMedCrossRef Doron KW, Funk CM, Glickstein M. Fronto-cerebellar circuits and eye movement control: a diffusion imaging tractography study of human cortico-pontine projections. Brain Res. 2010;1307:63–71.PubMedCrossRef
166.
go back to reference Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMedCrossRef Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–56.PubMedCrossRef
167.
go back to reference Li S, Ostwald D, Giese M, Kourtzi Z. Flexible coding for categorical decisions in the human brain. J Neurosci. 2007;27(45):12321.PubMedCrossRef Li S, Ostwald D, Giese M, Kourtzi Z. Flexible coding for categorical decisions in the human brain. J Neurosci. 2007;27(45):12321.PubMedCrossRef
168.
go back to reference Banich MT, Compton RJ. Cognitive neuroscience. 3rd ed. Belmont: Wadsworth; 2011. Banich MT, Compton RJ. Cognitive neuroscience. 3rd ed. Belmont: Wadsworth; 2011.
169.
go back to reference Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H, Berendse H, editors. The Basal Ganglia IX: Proceedings of the 9th Triennial Meeting of the International Basal Ganglia Society. New York: Springer; 2009. Seger CA. The involvement of corticostriatal loops in learning across tasks, species, and methodologies. In: Groenewegen H, Berendse H, editors. The Basal Ganglia IX: Proceedings of the 9th Triennial Meeting of the International Basal Ganglia Society. New York: Springer; 2009.
170.
go back to reference Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;Jul 21;33(1). Seger CA, Miller EK. Category learning in the brain. Annu Rev Neurosci. 2010;Jul 21;33(1).
171.
go back to reference Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997. Schmahmann JD. The cerebellum and cognition. San Diego: Academic Press; 1997.
172.
go back to reference Higuchi S, Chaminade T, Imamizu H, Kawato M. Shared neural correlates for language and tool use in Broca's area. NeuroReport. 2009;20(15):1376–81.PubMedCrossRef Higuchi S, Chaminade T, Imamizu H, Kawato M. Shared neural correlates for language and tool use in Broca's area. NeuroReport. 2009;20(15):1376–81.PubMedCrossRef
173.
go back to reference Stout D, Toth N, Schick K, Chaminade T. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363(1499):1939–49.PubMedCrossRef Stout D, Toth N, Schick K, Chaminade T. Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philos Trans R Soc Lond B Biol Sci. 2008;363(1499):1939–49.PubMedCrossRef
174.
go back to reference Vandervert LR, Koziol LF. How language came to be. Poster presented at the Second International Congress of the Society for Research on the Cerebellum. Chicago, IL. 2009. Vandervert LR, Koziol LF. How language came to be. Poster presented at the Second International Congress of the Society for Research on the Cerebellum. Chicago, IL. 2009.
175.
go back to reference Ullman MT, Pierpont EI. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex. 2005;41(3):399–433.PubMedCrossRef Ullman MT, Pierpont EI. Specific language impairment is not specific to language: the procedural deficit hypothesis. Cortex. 2005;41(3):399–433.PubMedCrossRef
176.
go back to reference Ullman MT. Contributions of memory circuits to language: the declarative/procedural model. Cognition. 2004;92(1–2):231–70.PubMedCrossRef Ullman MT. Contributions of memory circuits to language: the declarative/procedural model. Cognition. 2004;92(1–2):231–70.PubMedCrossRef
178.
go back to reference Gallese V, Rochat M, Cossu G, Sinigaglia C. Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol. 2009;45(1):103.PubMedCrossRef Gallese V, Rochat M, Cossu G, Sinigaglia C. Motor cognition and its role in the phylogeny and ontogeny of action understanding. Dev Psychol. 2009;45(1):103.PubMedCrossRef
180.
go back to reference Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.PubMedCrossRef Schmahmann JD, Sherman JC. Cerebellar cognitive affective syndrome. Int Rev Neurobiol. 1997;41:433–40.PubMedCrossRef
Metadata
Title
From Movement to Thought: Executive Function, Embodied Cognition, and the Cerebellum
Authors
Leonard F. Koziol
Deborah Ely Budding
Dana Chidekel
Publication date
01-06-2012
Publisher
Springer-Verlag
Published in
The Cerebellum / Issue 2/2012
Print ISSN: 1473-4222
Electronic ISSN: 1473-4230
DOI
https://doi.org/10.1007/s12311-011-0321-y

Other articles of this Issue 2/2012

The Cerebellum 2/2012 Go to the issue