Skip to main content
Top
Published in: Journal of Cardiovascular Magnetic Resonance 1/2019

Open Access 01-12-2019 | Research

Free breathing three-dimensional cardiac quantitative susceptibility mapping for differential cardiac chamber blood oxygenation – initial validation in patients with cardiovascular disease inclusive of direct comparison to invasive catheterization

Authors: Yan Wen, Jonathan W. Weinsaft, Thanh D. Nguyen, Zhe Liu, Evelyn M. Horn, Harsimran Singh, Jonathan Kochav, Sarah Eskreis-Winkler, Kofi Deh, Jiwon Kim, Martin R. Prince, Yi Wang, Pascal Spincemaille

Published in: Journal of Cardiovascular Magnetic Resonance | Issue 1/2019

Login to get access

Abstract

Background

Differential blood oxygenation between left (LV) and right ventricles (RV; ΔSaO2) is a key index of cardiac performance; LV dysfunction yields increased RV blood pool deoxygenation. Deoxyhemoglobin increases blood magnetic susceptibility, which can be measured using an emerging cardiovascular magnetic resonance (CMR) technique, Quantitative Susceptibility Mapping (QSM) – a concept previously demonstrated in healthy subjects using a breath-hold 2D imaging approach (2DBHQSM). This study tested utility of a novel 3D free-breathing QSM approach (3DNAVQSM) in normative controls, and validated 3DNAVQSM for non-invasive ΔSaO2 quantification in patients undergoing invasive cardiac catheterization (cath).

Methods

Initial control (n = 10) testing compared 2DBHQSM (ECG-triggered 2D gradient echo acquired at end-expiration) and 3DNAVQSM (ECG-triggered navigator gated gradient echo acquired in free breathing using a phase-ordered automatic window selection algorithm to partition data based on diaphragm position). Clinical testing was subsequently performed in patients being considered for cath, including 3DNAVQSM comparison to cine-CMR quantified LV function (n = 39), and invasive-cath quantified ΔSaO2 (n = 15). QSM was acquired using 3 T scanners; analysis was blinded to comparator tests (cine-CMR, cath).

Results

3DNAVQSM generated interpretable QSM in all controls; 2DBHQSM was successful in 6/10. Among controls in whom both pulse sequences were successful, RV/LV susceptibility difference (and ΔSaO2) were not significantly different between 3DNAVQSM and 2DBHQSM (252 ± 39 ppb [17.5 ± 3.1%] vs. 211 ± 29 ppb [14.7 ± 2.0%]; p = 0.39). Acquisition times were 30% lower with 3DNAVQSM (4.7 ± 0.9 vs. 6.7 ± 0.5 min, p = 0.002), paralleling a trend towards lower LV mis-registration on 3DNAVQSM (p = 0.14). Among cardiac patients (63 ± 10y, 56% CAD) 3DNAVQSM was successful in 87% (34/39) and yielded higher ΔSaO2 (24.9 ± 6.1%) than in controls (p < 0.001). QSM-calculated ΔSaO2 was higher among patients with LV dysfunction as measured on cine-CMR based on left ventricular ejection fraction (29.4 ± 5.9% vs. 20.9 ± 5.7%, p < 0.001) or stroke volume (27.9 ± 7.5% vs. 22.4 ± 5.5%, p = 0.013). Cath measurements (n = 15) obtained within a mean interval of 4 ± 3 days from CMR demonstrated 3DNAVQSM to yield high correlation (r = 0.87, p < 0.001), small bias (− 0.1%), and good limits of agreement (±8.6%) with invasively measured ΔSaO2.

Conclusion

3DNAVQSM provides a novel means of assessing cardiac performance. Differential susceptibility between the LV and RV is increased in patients with cine-CMR evidence of LV systolic dysfunction; QSM-quantified ΔSaO2 yields high correlation and good agreement with the reference of invasively-quantified ΔSaO2.
Literature
1.
go back to reference Gallet R, Lellouche N, Mitchell-Heggs L, Bouhemad B, Bensaid A, Dubois-Randé J-L, Gueret P, Lim P. Prognosis value of central venous oxygen saturation in acute decompensated heart failure. Archives of Cardiovascular Diseases. 2012;105(1):5–12.PubMedCrossRef Gallet R, Lellouche N, Mitchell-Heggs L, Bouhemad B, Bensaid A, Dubois-Randé J-L, Gueret P, Lim P. Prognosis value of central venous oxygen saturation in acute decompensated heart failure. Archives of Cardiovascular Diseases. 2012;105(1):5–12.PubMedCrossRef
2.
go back to reference Swiston JR, Johnson SR, Granton JT. Factors that prognosticate mortality in idiopathic pulmonary arterial hypertension: a systematic review of the literature. Respir Med. 2010;104(11):1588–607.PubMedCrossRef Swiston JR, Johnson SR, Granton JT. Factors that prognosticate mortality in idiopathic pulmonary arterial hypertension: a systematic review of the literature. Respir Med. 2010;104(11):1588–607.PubMedCrossRef
3.
go back to reference Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44.PubMedCrossRef Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Survival in primary pulmonary hypertension. Validation of a prognostic equation. Circulation. 1994;89(4):1733–44.PubMedCrossRef
4.
go back to reference Mullens W, Abrahams Z, Skouri HN, Taylor DO, Starling RC, Francis GS, Young JB, Tang WH. Prognostic evaluation of ambulatory patients with advanced heart failure. Am J Cardiol. 2008;101(9):1297–302.PubMedCrossRef Mullens W, Abrahams Z, Skouri HN, Taylor DO, Starling RC, Francis GS, Young JB, Tang WH. Prognostic evaluation of ambulatory patients with advanced heart failure. Am J Cardiol. 2008;101(9):1297–302.PubMedCrossRef
5.
go back to reference Patel CB, DeVore AD, Felker GM, Wojdyla DM, Hernandez AF, Milano CA, O'Connor CM, Rogers JG. Characteristics and outcomes of patients with heart failure and discordant findings by right-sided heart catheterization and cardiopulmonary exercise testing. Am J Cardiol. 2014;114(7):1059–64.PubMedCrossRef Patel CB, DeVore AD, Felker GM, Wojdyla DM, Hernandez AF, Milano CA, O'Connor CM, Rogers JG. Characteristics and outcomes of patients with heart failure and discordant findings by right-sided heart catheterization and cardiopulmonary exercise testing. Am J Cardiol. 2014;114(7):1059–64.PubMedCrossRef
6.
go back to reference Li D, Wang Y, Waight DJ. Blood oxygen saturation assessment in vivo using T2 * estimation. Magn Reson Med. 1998;39(5):685–90.PubMedCrossRef Li D, Wang Y, Waight DJ. Blood oxygen saturation assessment in vivo using T2 * estimation. Magn Reson Med. 1998;39(5):685–90.PubMedCrossRef
7.
go back to reference Silvennoinen MJ, Kettunen MI, Kauppinen RA. Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med. 2003;49(3):568–71.PubMedCrossRef Silvennoinen MJ, Kettunen MI, Kauppinen RA. Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation. Magn Reson Med. 2003;49(3):568–71.PubMedCrossRef
8.
go back to reference Wright GA, Hu BS, Macovski A. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1(3):275–83.PubMedCrossRef Wright GA, Hu BS, Macovski A. Estimating oxygen saturation of blood in vivo with MR imaging at 1.5 T. J Magn Reson Imaging. 1991;1(3):275–83.PubMedCrossRef
9.
go back to reference Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta Gen Subj. 1982;714(2):265–70.CrossRef Thulborn KR, Waterton JC, Matthews PM, Radda GK. Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta Gen Subj. 1982;714(2):265–70.CrossRef
10.
11.
go back to reference Varghese J, Potter LC, LaFountain R, Pan X, Raman SV, Ahmad R, Simonetti OP. CMR-based blood oximetry via multi-parametric estimation using multiple T2 measurements. J Cardiovasc Magn Reson. 2017;19(1):88.PubMedPubMedCentralCrossRef Varghese J, Potter LC, LaFountain R, Pan X, Raman SV, Ahmad R, Simonetti OP. CMR-based blood oximetry via multi-parametric estimation using multiple T2 measurements. J Cardiovasc Magn Reson. 2017;19(1):88.PubMedPubMedCentralCrossRef
12.
go back to reference Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.PubMedPubMedCentralCrossRef Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993;64(3):803–12.PubMedPubMedCentralCrossRef
13.
go back to reference Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. QUantitative imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med. 2011;66(6):1550–62.PubMedPubMedCentralCrossRef Bolar DS, Rosen BR, Sorensen AG, Adalsteinsson E. QUantitative imaging of eXtraction of oxygen and TIssue consumption (QUIXOTIC) using venular-targeted velocity-selective spin labeling. Magn Reson Med. 2011;66(6):1550–62.PubMedPubMedCentralCrossRef
14.
go back to reference Judge O, Ji F, Fleming N, Liu H. Current use of the pulmonary artery catheter in cardiac surgery: a survey study. J Cardiothorac Vasc Anesth. 2015;29(1):69–75.PubMedCrossRef Judge O, Ji F, Fleming N, Liu H. Current use of the pulmonary artery catheter in cardiac surgery: a survey study. J Cardiothorac Vasc Anesth. 2015;29(1):69–75.PubMedCrossRef
15.
go back to reference Brovman EY, Gabriel RA, Dutton RP, Urman RD. Pulmonary artery catheter use during cardiac surgery in the United States, 2010 to 2014. J Cardiothorac Vasc Anesth. 2016;30(3):579–84.PubMedCrossRef Brovman EY, Gabriel RA, Dutton RP, Urman RD. Pulmonary artery catheter use during cardiac surgery in the United States, 2010 to 2014. J Cardiothorac Vasc Anesth. 2016;30(3):579–84.PubMedCrossRef
16.
go back to reference Jesurum J. Svo2 Monitoring. Crit Care Nurse. 2004;24(4):73–6. Jesurum J. Svo2 Monitoring. Crit Care Nurse. 2004;24(4):73–6.
17.
go back to reference de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med. 2010;63(1):194–206.PubMed de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y. Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med. 2010;63(1):194–206.PubMed
18.
go back to reference Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.PubMedCrossRef Haacke EM, Liu S, Buch S, Zheng W, Wu D, Ye Y. Quantitative susceptibility mapping: current status and future directions. Magn Reson Imaging. 2015;33(1):1–25.PubMedCrossRef
19.
go back to reference Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.PubMedCrossRef Liu C, Li W, Tong KA, Yeom KW, Kuzminski S. Susceptibility-weighted imaging and quantitative susceptibility mapping in the brain. J Magn Reson Imaging. 2015;42(1):23–41.PubMedCrossRef
20.
go back to reference Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101.PubMedCrossRef Wang Y, Liu T. Quantitative susceptibility mapping (QSM): decoding MRI data for a tissue magnetic biomarker. Magn Reson Med. 2015;73(1):82–101.PubMedCrossRef
21.
go back to reference Schweser F, Deistung A, Reichenbach JR. Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys. 2016;26(1):6–34.PubMedCrossRef Schweser F, Deistung A, Reichenbach JR. Foundations of MRI phase imaging and processing for quantitative susceptibility mapping (QSM). Z Med Phys. 2016;26(1):6–34.PubMedCrossRef
22.
go back to reference Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, Zhang Y, Yao Y, Gillen KM, Wilman AH, Gupta A, Tsiouris AJ, Kovanlikaya I, Chiang GC-Y, Weinsaft JW, Tanenbaum L, Chen W, Zhu W, Chang S, Lou M, Kopell BH, Kaplitt MG, Devos D, Hirai T, Huang X, Korogi Y, Shtilbans A, Jahng G-H, Pelletier D, Gauthier SA, Pitt D, Bush AI, Brittenham GM, Prince MR. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. Journal of Magnetic Resonance Imaging. 2017;46(4):951–71.PubMedCrossRef Wang Y, Spincemaille P, Liu Z, Dimov A, Deh K, Li J, Zhang Y, Yao Y, Gillen KM, Wilman AH, Gupta A, Tsiouris AJ, Kovanlikaya I, Chiang GC-Y, Weinsaft JW, Tanenbaum L, Chen W, Zhu W, Chang S, Lou M, Kopell BH, Kaplitt MG, Devos D, Hirai T, Huang X, Korogi Y, Shtilbans A, Jahng G-H, Pelletier D, Gauthier SA, Pitt D, Bush AI, Brittenham GM, Prince MR. Clinical quantitative susceptibility mapping (QSM): Biometal imaging and its emerging roles in patient care. Journal of Magnetic Resonance Imaging. 2017;46(4):951–71.PubMedCrossRef
23.
go back to reference Zhou D, Cho J, Zhang J, Spincemaille P, Wang Y. Susceptibility underestimation in a high-susceptibility phantom: dependence on imaging resolution, magnitude contrast, and other parameters. Magn Reson Med. 2017;78(3):1080–6.PubMedCrossRef Zhou D, Cho J, Zhang J, Spincemaille P, Wang Y. Susceptibility underestimation in a high-susceptibility phantom: dependence on imaging resolution, magnitude contrast, and other parameters. Magn Reson Med. 2017;78(3):1080–6.PubMedCrossRef
24.
go back to reference Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22(4):210–6.PubMedPubMedCentralCrossRef Pauling L, Coryell CD. The magnetic properties and structure of hemoglobin, Oxyhemoglobin and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A. 1936;22(4):210–6.PubMedPubMedCentralCrossRef
25.
go back to reference Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59.PubMedCrossRef Fan AP, Bilgic B, Gagnon L, Witzel T, Bhat H, Rosen BR, Adalsteinsson E. Quantitative oxygenation venography from MRI phase. Magn Reson Med. 2014;72(1):149–59.PubMedCrossRef
26.
go back to reference Xu B, Liu T, Spincemaille P, Prince M, Wang Y. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med. 2014;72(2):438–45.PubMedCrossRef Xu B, Liu T, Spincemaille P, Prince M, Wang Y. Flow compensated quantitative susceptibility mapping for venous oxygenation imaging. Magn Reson Med. 2014;72(2):438–45.PubMedCrossRef
27.
go back to reference Dimov AV, Liu Z, Spincemaille P, Prince MR, Du J, Wang Y. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data. Magn Reson Med. 2018;79(1):121–8.PubMedCrossRef Dimov AV, Liu Z, Spincemaille P, Prince MR, Du J, Wang Y. Bone quantitative susceptibility mapping using a chemical species-specific R2* signal model with ultrashort and conventional echo data. Magn Reson Med. 2018;79(1):121–8.PubMedCrossRef
28.
go back to reference Chen W, Zhu W, Kovanlikaya I, Kovanlikaya A, Liu T, Wang S, Salustri C, Wang Y. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology. 2014;270(2):496–505.PubMedPubMedCentralCrossRef Chen W, Zhu W, Kovanlikaya I, Kovanlikaya A, Liu T, Wang S, Salustri C, Wang Y. Intracranial calcifications and hemorrhages: characterization with quantitative susceptibility mapping. Radiology. 2014;270(2):496–505.PubMedPubMedCentralCrossRef
30.
go back to reference Wen Y, Nguyen TD, Liu Z, Spincemaille P, Zhou D, Dimov A, Kee Y, Deh K, Kim J, Weinsaft JW, Wang Y. Cardiac quantitative susceptibility mapping (QSM) for heart chamber oxygenation. Magn Reson Med. 2018;79(3):1545–52.PubMedCrossRef Wen Y, Nguyen TD, Liu Z, Spincemaille P, Zhou D, Dimov A, Kee Y, Deh K, Kim J, Weinsaft JW, Wang Y. Cardiac quantitative susceptibility mapping (QSM) for heart chamber oxygenation. Magn Reson Med. 2018;79(3):1545–52.PubMedCrossRef
31.
go back to reference Nguyen TD, Spincemaille P, Weinsaft JW, Ho BY, Cham MD, Prince MR, Wang Y. A fast navigator-gated 3D sequence for delayed enhancement MRI of the myocardium: comparison with breathhold 2D imaging. J Magn Reson Imaging. 2008;27(4):802–8.PubMedCrossRef Nguyen TD, Spincemaille P, Weinsaft JW, Ho BY, Cham MD, Prince MR, Wang Y. A fast navigator-gated 3D sequence for delayed enhancement MRI of the myocardium: comparison with breathhold 2D imaging. J Magn Reson Imaging. 2008;27(4):802–8.PubMedCrossRef
32.
go back to reference Nguyen TD, Spincemaille P, Cham MD, Weinsaft JW, Prince MR, Wang Y. Free-breathing 3-dimensional steady-state free precession coronary magnetic resonance angiography: comparison of four navigator gating techniques. Magn Reson Imaging. 2009;27(6):807–14.PubMedPubMedCentralCrossRef Nguyen TD, Spincemaille P, Cham MD, Weinsaft JW, Prince MR, Wang Y. Free-breathing 3-dimensional steady-state free precession coronary magnetic resonance angiography: comparison of four navigator gating techniques. Magn Reson Imaging. 2009;27(6):807–14.PubMedPubMedCentralCrossRef
33.
go back to reference Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, Cheng Q, Spincemaille P, Wang Y. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE Trans Med Imaging. 2015;34(2):531–40.PubMedCrossRef Dong J, Liu T, Chen F, Zhou D, Dimov A, Raj A, Cheng Q, Spincemaille P, Wang Y. Simultaneous phase unwrapping and removal of chemical shift (SPURS) using graph cuts: application in quantitative susceptibility mapping. IEEE Trans Med Imaging. 2015;34(2):531–40.PubMedCrossRef
34.
go back to reference Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–44.PubMedCrossRef Reeder SB, Pineda AR, Wen Z, Shimakawa A, Yu H, Brittain JH, Gold GE, Beaulieu CH, Pelc NJ. Iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL): application with fast spin-echo imaging. Magn Reson Med. 2005;54(3):636–44.PubMedCrossRef
35.
go back to reference Dimov AV, Liu T, Spincemaille P, Ecanow JS, Tan H, Edelman RR, Wang Y. Joint estimation of chemical shift and quantitative susceptibility mapping (chemical QSM). Magn Reson Med. 2015;73(6):2100–10.PubMedCrossRef Dimov AV, Liu T, Spincemaille P, Ecanow JS, Tan H, Edelman RR, Wang Y. Joint estimation of chemical shift and quantitative susceptibility mapping (chemical QSM). Magn Reson Med. 2015;73(6):2100–10.PubMedCrossRef
36.
go back to reference Liu Z, Kee Y, Zhou D, Wang Y, Spincemaille P. Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping. Magn Reson Med. 2017;78(1):303–15.PubMedCrossRef Liu Z, Kee Y, Zhou D, Wang Y, Spincemaille P. Preconditioned total field inversion (TFI) method for quantitative susceptibility mapping. Magn Reson Med. 2017;78(1):303–15.PubMedCrossRef
37.
go back to reference Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y. MEDI+0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med. 2018;79(5):2795–803.PubMedCrossRef Liu Z, Spincemaille P, Yao Y, Zhang Y, Wang Y. MEDI+0: morphology enabled dipole inversion with automatic uniform cerebrospinal fluid zero reference for quantitative susceptibility mapping. Magn Reson Med. 2018;79(5):2795–803.PubMedCrossRef
38.
go back to reference Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med. 2013;69(2):467–76.PubMedCrossRef Liu T, Wisnieff C, Lou M, Chen W, Spincemaille P, Wang Y. Nonlinear formulation of the magnetic field to source relationship for robust quantitative susceptibility mapping. Magn Reson Med. 2013;69(2):467–76.PubMedCrossRef
39.
go back to reference Brunori M. Hemoglobin: structure, function, evolution, and pathology. Trends Biochem Sci. 1984;9(5):176.CrossRef Brunori M. Hemoglobin: structure, function, evolution, and pathology. Trends Biochem Sci. 1984;9(5):176.CrossRef
40.
go back to reference Billett H. Hemoglobin and hematocrit. In: rd, Walker HK, hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworth Publishers, a division of Reed Publishing; 1990. Billett H. Hemoglobin and hematocrit. In: rd, Walker HK, hall WD, Hurst JW, editors. Clinical methods: the history, physical, and laboratory examinations. Boston: Butterworth Publishers, a division of Reed Publishing; 1990.
41.
go back to reference Ludbrook J. Linear regression analysis for comparing two measurers or methods of measurement: but which regression? Clin Exp Pharmacol Physiol. 2010;37(7):692–9.PubMedCrossRef Ludbrook J. Linear regression analysis for comparing two measurers or methods of measurement: but which regression? Clin Exp Pharmacol Physiol. 2010;37(7):692–9.PubMedCrossRef
42.
go back to reference Golay X, Silvennoinen MJ, Zhou J, Clingman CS, Kauppinen RA, Pekar JJ, van Zij PCM. Measurement of tissue oxygen extraction ratios from venous blood T2: increased precision and validation of principle. Magn Reson Med. 2001;46(2):282–91.PubMedCrossRef Golay X, Silvennoinen MJ, Zhou J, Clingman CS, Kauppinen RA, Pekar JJ, van Zij PCM. Measurement of tissue oxygen extraction ratios from venous blood T2: increased precision and validation of principle. Magn Reson Med. 2001;46(2):282–91.PubMedCrossRef
43.
go back to reference Fernández-Seara MA, Techawiboonwong A, Detre JA, Wehrli FW. MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med. 2006;55(5):967–73.PubMedCrossRef Fernández-Seara MA, Techawiboonwong A, Detre JA, Wehrli FW. MR susceptometry for measuring global brain oxygen extraction. Magn Reson Med. 2006;55(5):967–73.PubMedCrossRef
44.
go back to reference Fan AP, Benner T, Bolar DS, Rosen BR, Adalsteinsson E. Phase-based regional oxygen metabolism (PROM) using MRI. Magn Reson Med. 2012;67(3):669–78.PubMedCrossRef Fan AP, Benner T, Bolar DS, Rosen BR, Adalsteinsson E. Phase-based regional oxygen metabolism (PROM) using MRI. Magn Reson Med. 2012;67(3):669–78.PubMedCrossRef
45.
go back to reference Haacke EM, Lai S, Reichenbach JR, Kuppusamy K, Hoogenraad FGC, Takeichi H, Lin W. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997;5(5):341–6.PubMedCrossRef Haacke EM, Lai S, Reichenbach JR, Kuppusamy K, Hoogenraad FGC, Takeichi H, Lin W. In vivo measurement of blood oxygen saturation using magnetic resonance imaging: a direct validation of the blood oxygen level-dependent concept in functional brain imaging. Hum Brain Mapp. 1997;5(5):341–6.PubMedCrossRef
46.
go back to reference Weisskoff RM, Kiihne S. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med. 1992;24(2):375–83.PubMedCrossRef Weisskoff RM, Kiihne S. MRI susceptometry: image-based measurement of absolute susceptibility of MR contrast agents and human blood. Magn Reson Med. 1992;24(2):375–83.PubMedCrossRef
47.
go back to reference Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med. 2012;68(3):863–7.PubMedCrossRef Jain V, Abdulmalik O, Propert KJ, Wehrli FW. Investigating the magnetic susceptibility properties of fresh human blood for noninvasive oxygen saturation quantification. Magn Reson Med. 2012;68(3):863–7.PubMedCrossRef
48.
go back to reference Haacke EM, Tang J, Neelavalli J, Cheng YCN. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76.PubMedPubMedCentralCrossRef Haacke EM, Tang J, Neelavalli J, Cheng YCN. Susceptibility mapping as a means to visualize veins and quantify oxygen saturation. J Magn Reson Imaging. 2010;32(3):663–76.PubMedPubMedCentralCrossRef
49.
go back to reference Cho J, Kee Y, Spincemaille P, Nguyen TD, Zhang J, Gupta A, Zhang S, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn Reson Med. 2018;80(4):1595–604.PubMedPubMedCentralCrossRef Cho J, Kee Y, Spincemaille P, Nguyen TD, Zhang J, Gupta A, Zhang S, Wang Y. Cerebral metabolic rate of oxygen (CMRO2) mapping by combining quantitative susceptibility mapping (QSM) and quantitative blood oxygenation level-dependent imaging (qBOLD). Magn Reson Med. 2018;80(4):1595–604.PubMedPubMedCentralCrossRef
50.
go back to reference Zhang J, Cho J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn Reson Med. 2018;79(1):172–9.PubMedCrossRef Zhang J, Cho J, Zhou D, Nguyen TD, Spincemaille P, Gupta A, Wang Y. Quantitative susceptibility mapping-based cerebral metabolic rate of oxygen mapping with minimum local variance. Magn Reson Med. 2018;79(1):172–9.PubMedCrossRef
51.
go back to reference Barratt-Boyes BG, Wood EH. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50(1):93–106.PubMed Barratt-Boyes BG, Wood EH. The oxygen saturation of blood in the venae cavae, right-heart chambers, and pulmonary vessels of healthy subjects. J Lab Clin Med. 1957;50(1):93–106.PubMed
52.
go back to reference Wagner A, Mahrholdt H, Thomson L, Hager S, Meinhardt G, Rehwald W, Parker M, Shah D, Sechtem U, Kim RJ, Judd RM. Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol. 2006;47(10):2027–33.PubMedCrossRef Wagner A, Mahrholdt H, Thomson L, Hager S, Meinhardt G, Rehwald W, Parker M, Shah D, Sechtem U, Kim RJ, Judd RM. Effects of time, dose, and inversion time for acute myocardial infarct size measurements based on magnetic resonance imaging-delayed contrast enhancement. J Am Coll Cardiol. 2006;47(10):2027–33.PubMedCrossRef
53.
55.
go back to reference Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.PubMedCrossRef Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182–95.PubMedCrossRef
56.
go back to reference Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar imaging. Magn Reson Med. 2015;73(5):1932–8.PubMedCrossRef Sun H, Wilman AH. Quantitative susceptibility mapping using single-shot echo-planar imaging. Magn Reson Med. 2015;73(5):1932–8.PubMedCrossRef
57.
go back to reference Quick HH, Ladd ME, Hoevel M, Bosk S, Debatin JF, Laub G, Schroeder T. Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging. 2002;15(6):710–5.PubMedCrossRef Quick HH, Ladd ME, Hoevel M, Bosk S, Debatin JF, Laub G, Schroeder T. Real-time MRI of joint movement with trueFISP. J Magn Reson Imaging. 2002;15(6):710–5.PubMedCrossRef
59.
go back to reference Xu B, Spincemaille P, Chen G, Agrawal M, Nguyen TD, Prince MR, Wang Y. Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction. Magn Reson Med. 2013;69(2):370–81.PubMedCrossRef Xu B, Spincemaille P, Chen G, Agrawal M, Nguyen TD, Prince MR, Wang Y. Fast 3D contrast enhanced MRI of the liver using temporal resolution acceleration with constrained evolution reconstruction. Magn Reson Med. 2013;69(2):370–81.PubMedCrossRef
60.
go back to reference Dewey M, Teige F, Schnapauff D, et al. NOninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med. 2006;145(6):407–15.PubMedCrossRef Dewey M, Teige F, Schnapauff D, et al. NOninvasive detection of coronary artery stenoses with multislice computed tomography or magnetic resonance imaging. Ann Intern Med. 2006;145(6):407–15.PubMedCrossRef
61.
go back to reference Nguyen TD, Spincemaille P, Prince MR, Wang Y. Cardiac fat navigator-gated steady-state free precession 3D magnetic resonance angiography of coronary arteries. Magn Reson Med. 2006;56(1):210–5.PubMedCrossRef Nguyen TD, Spincemaille P, Prince MR, Wang Y. Cardiac fat navigator-gated steady-state free precession 3D magnetic resonance angiography of coronary arteries. Magn Reson Med. 2006;56(1):210–5.PubMedCrossRef
62.
go back to reference Nguyen TD, Nuval A, Mulukutla S, Wang Y. Direct monitoring of coronary artery motion with cardiac fat navigator echoes. Magn Reson Med. 2003;50(2):235–41.PubMedCrossRef Nguyen TD, Nuval A, Mulukutla S, Wang Y. Direct monitoring of coronary artery motion with cardiac fat navigator echoes. Magn Reson Med. 2003;50(2):235–41.PubMedCrossRef
63.
go back to reference Nguyen TD, Spincemaille P, Cham MD, Weinsaft JW, Prince MR, Wang Y. Free-breathing 3D steady-state free precession coronary magnetic resonance angiography: comparison of diaphragm and cardiac fat navigators. Journal of magnetic resonance imaging : JMRI. 2008;28(2):509–14.PubMedCrossRef Nguyen TD, Spincemaille P, Cham MD, Weinsaft JW, Prince MR, Wang Y. Free-breathing 3D steady-state free precession coronary magnetic resonance angiography: comparison of diaphragm and cardiac fat navigators. Journal of magnetic resonance imaging : JMRI. 2008;28(2):509–14.PubMedCrossRef
Metadata
Title
Free breathing three-dimensional cardiac quantitative susceptibility mapping for differential cardiac chamber blood oxygenation – initial validation in patients with cardiovascular disease inclusive of direct comparison to invasive catheterization
Authors
Yan Wen
Jonathan W. Weinsaft
Thanh D. Nguyen
Zhe Liu
Evelyn M. Horn
Harsimran Singh
Jonathan Kochav
Sarah Eskreis-Winkler
Kofi Deh
Jiwon Kim
Martin R. Prince
Yi Wang
Pascal Spincemaille
Publication date
01-12-2019
Publisher
BioMed Central
Published in
Journal of Cardiovascular Magnetic Resonance / Issue 1/2019
Electronic ISSN: 1532-429X
DOI
https://doi.org/10.1186/s12968-019-0579-7

Other articles of this Issue 1/2019

Journal of Cardiovascular Magnetic Resonance 1/2019 Go to the issue