Skip to main content
Top
Published in: Pediatric Radiology 7/2018

01-07-2018 | Original Article

Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique

Authors: Tess Armstrong, Karrie V. Ly, Smruthi Murthy, Shahnaz Ghahremani, Grace Hyun J. Kim, Kara L. Calkins, Holden H. Wu

Published in: Pediatric Radiology | Issue 7/2018

Login to get access

Abstract

Background

In adults, noninvasive chemical shift encoded Cartesian magnetic resonance imaging (MRI) and single-voxel magnetic resonance (MR) spectroscopy (SVS) accurately quantify hepatic steatosis but require breath-holding. In children, especially young and sick children, breath-holding is often limited or not feasible. Sedation can facilitate breath-holding but is highly undesirable. For these reasons, there is a need to develop free-breathing MRI technology that accurately quantifies steatosis in all children.

Objective

This study aimed to compare non-sedated free-breathing multi-echo 3-D stack-of-radial (radial) MRI versus standard breath-holding MRI and SVS techniques in a group of children for fat quantification with respect to image quality, accuracy and repeatability.

Materials and methods

Healthy children (n=10, median age [±interquartile range]: 10.9 [±3.3] years) and overweight children with nonalcoholic fatty liver disease (NAFLD) (n=9, median age: 15.2 [±3.2] years) were imaged at 3 Tesla using free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS. Acquisitions were performed twice to assess repeatability (within-subject mean difference, MDwithin). Images and hepatic proton-density fat fraction (PDFF) maps were scored for image quality. Free-breathing and breath-holding PDFF were compared using linear regression (correlation coefficient, r and concordance correlation coefficient, ρc) and Bland-Altman analysis (mean difference). P<0.05 was considered significant.

Results

In patients with NAFLD, free-breathing radial MRI demonstrated significantly less motion artifacts compared to breath-holding Cartesian (P<0.05). Free-breathing radial PDFF demonstrated a linear relationship (P<0.001) versus breath-holding SVS PDFF and breath-holding Cartesian PDFF with r=0.996 and ρc=0.994, and r=0.997 and ρc=0.995, respectively. The mean difference in PDFF between free-breathing radial MRI, breath-holding Cartesian MRI and breath-holding SVS was <0.7%. Repeated free-breathing radial MRI had MDwithin=0.25% for PDFF.

Conclusion

In this pediatric study, non-sedated free-breathing radial MRI provided accurate and repeatable hepatic PDFF measurements and improved image quality, compared to standard breath-holding MR techniques.
Appendix
Available only for authorised users
Literature
2.
go back to reference Schwimmer JB, Deutsch R, Kahen T et al (2006) Prevalence of fatty liver in children and adolescents. Pediatrics 118:1388–1393CrossRefPubMed Schwimmer JB, Deutsch R, Kahen T et al (2006) Prevalence of fatty liver in children and adolescents. Pediatrics 118:1388–1393CrossRefPubMed
3.
go back to reference Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S et al (2009) The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 58:1538–1544CrossRefPubMedCentralPubMed Feldstein AE, Charatcharoenwitthaya P, Treeprasertsuk S et al (2009) The natural history of non-alcoholic fatty liver disease in children: a follow-up study for up to 20 years. Gut 58:1538–1544CrossRefPubMedCentralPubMed
4.
go back to reference Pardee PE, Lavine JE, Schwimmer JB (2009) Diagnosis and treatment of pediatric nonalcoholic steatohepatitis and the implications for bariatric surgery. Semin Pediatr Surg 18:144–151CrossRefPubMedCentralPubMed Pardee PE, Lavine JE, Schwimmer JB (2009) Diagnosis and treatment of pediatric nonalcoholic steatohepatitis and the implications for bariatric surgery. Semin Pediatr Surg 18:144–151CrossRefPubMedCentralPubMed
5.
go back to reference Younossi ZM (2008) Review article: current management of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 28:2–12CrossRefPubMed Younossi ZM (2008) Review article: current management of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 28:2–12CrossRefPubMed
6.
go back to reference Uppal V, Mansoor S, Furuya KN (2016) Pediatric non-alcoholic fatty liver disease. Curr Gastroenterol Rep 18:24CrossRefPubMed Uppal V, Mansoor S, Furuya KN (2016) Pediatric non-alcoholic fatty liver disease. Curr Gastroenterol Rep 18:24CrossRefPubMed
7.
go back to reference Della Corte C, Vajro P, Socha P et al (2014) Pediatric non-alcoholic fatty liver disease: recent advances. Clin Res Hepatol Gastroenterol 38:419–422CrossRefPubMed Della Corte C, Vajro P, Socha P et al (2014) Pediatric non-alcoholic fatty liver disease: recent advances. Clin Res Hepatol Gastroenterol 38:419–422CrossRefPubMed
8.
go back to reference Tapper EB, Lok AS-F (2017) Use of liver imaging and biopsy in clinical practice. N Engl J Med 377:756–768CrossRefPubMed Tapper EB, Lok AS-F (2017) Use of liver imaging and biopsy in clinical practice. N Engl J Med 377:756–768CrossRefPubMed
9.
go back to reference Sumida Y, Nakajima A, Itoh Y (2014) Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20:475–485CrossRefPubMedCentralPubMed Sumida Y, Nakajima A, Itoh Y (2014) Limitations of liver biopsy and non-invasive diagnostic tests for the diagnosis of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. World J Gastroenterol 20:475–485CrossRefPubMedCentralPubMed
10.
11.
go back to reference Manning DS, Afdhal NH (2008) Diagnosis and quantitation of fibrosis. Gastroenterology 134:1670–1681CrossRefPubMed Manning DS, Afdhal NH (2008) Diagnosis and quantitation of fibrosis. Gastroenterology 134:1670–1681CrossRefPubMed
14.
go back to reference Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468CrossRefPubMed Szczepaniak LS, Nurenberg P, Leonard D et al (2005) Magnetic resonance spectroscopy to measure hepatic triglyceride content: prevalence of hepatic steatosis in the general population. Am J Physiol Endocrinol Metab 288:E462–E468CrossRefPubMed
15.
go back to reference Bohte AE, van Werven JR, Bipat S et al (2011) The diagnostic accuracy of US, CT, MRI and H-1-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 21:87–97CrossRefPubMed Bohte AE, van Werven JR, Bipat S et al (2011) The diagnostic accuracy of US, CT, MRI and H-1-MRS for the evaluation of hepatic steatosis compared with liver biopsy: a meta-analysis. Eur Radiol 21:87–97CrossRefPubMed
16.
go back to reference Georgoff P, Thomasson D, Louie A et al (2012) Hydrogen-1 MR spectroscopy for measurement and diagnosis of hepatic steatosis. AJR Am J Roentgenol 199:2–7CrossRefPubMedCentralPubMed Georgoff P, Thomasson D, Louie A et al (2012) Hydrogen-1 MR spectroscopy for measurement and diagnosis of hepatic steatosis. AJR Am J Roentgenol 199:2–7CrossRefPubMedCentralPubMed
17.
go back to reference Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258:767–775CrossRefPubMedCentralPubMed Meisamy S, Hines CDG, Hamilton G et al (2011) Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy. Radiology 258:767–775CrossRefPubMedCentralPubMed
18.
go back to reference Hines CDG, Yu H, Shimakawa A et al (2009) T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 30:1215–1222CrossRefPubMedCentralPubMed Hines CDG, Yu H, Shimakawa A et al (2009) T1 independent, T2* corrected MRI with accurate spectral modeling for quantification of fat: validation in a fat-water-SPIO phantom. J Magn Reson Imaging 30:1215–1222CrossRefPubMedCentralPubMed
19.
go back to reference Achmad E, Yokoo T, Hamilton G et al (2015) Feasibility of and agreement between MR imaging and spectroscopic estimation of hepatic proton density fat fraction in children with known or suspected nonalcoholic fatty liver disease. Abdom Imaging 40:3084–3090CrossRefPubMedCentralPubMed Achmad E, Yokoo T, Hamilton G et al (2015) Feasibility of and agreement between MR imaging and spectroscopic estimation of hepatic proton density fat fraction in children with known or suspected nonalcoholic fatty liver disease. Abdom Imaging 40:3084–3090CrossRefPubMedCentralPubMed
20.
go back to reference Reeder SB, Cruite I, Hamilton G et al (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749CrossRefPubMed Reeder SB, Cruite I, Hamilton G et al (2011) Quantitative assessment of liver fat with magnetic resonance imaging and spectroscopy. J Magn Reson Imaging 34:729–749CrossRefPubMed
21.
go back to reference Koh H, Kim S, Kim MJ et al (2015) Hepatic fat quantification magnetic resonance for monitoring treatment response in pediatric nonalcoholic steatohepatitis. World J Gastroenterol 21:9741–9748CrossRefPubMedCentralPubMed Koh H, Kim S, Kim MJ et al (2015) Hepatic fat quantification magnetic resonance for monitoring treatment response in pediatric nonalcoholic steatohepatitis. World J Gastroenterol 21:9741–9748CrossRefPubMedCentralPubMed
22.
go back to reference Schwimmer JB, Middleton MS, Behling C et al (2015) Magnetic resonance imaging and liver histology as biomarkers of hepatic steatosis in children with nonalcoholic fatty liver disease. Hepatology 61:1887–1895CrossRefPubMedCentralPubMed Schwimmer JB, Middleton MS, Behling C et al (2015) Magnetic resonance imaging and liver histology as biomarkers of hepatic steatosis in children with nonalcoholic fatty liver disease. Hepatology 61:1887–1895CrossRefPubMedCentralPubMed
24.
go back to reference Bashir MR, Zhong X, Nickel MD et al (2015) Quantification of hepatic steatosis with a multistep adaptive fitting MRI approach: prospective validation against MR spectroscopy. AJR Am J Roentgenol 204:297–306CrossRefPubMed Bashir MR, Zhong X, Nickel MD et al (2015) Quantification of hepatic steatosis with a multistep adaptive fitting MRI approach: prospective validation against MR spectroscopy. AJR Am J Roentgenol 204:297–306CrossRefPubMed
25.
go back to reference Kühn J-P, Hernando D, Muñoz del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265:133–142CrossRefPubMedCentralPubMed Kühn J-P, Hernando D, Muñoz del Rio A et al (2012) Effect of multipeak spectral modeling of fat for liver iron and fat quantification: correlation of biopsy with MR imaging results. Radiology 265:133–142CrossRefPubMedCentralPubMed
26.
go back to reference Idilman IS, Aniktar H, Idilman R et al (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775CrossRefPubMed Idilman IS, Aniktar H, Idilman R et al (2013) Hepatic steatosis: quantification by proton density fat fraction with MR imaging versus liver biopsy. Radiology 267:767–775CrossRefPubMed
27.
go back to reference Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759CrossRefPubMedCentralPubMed Yokoo T, Shiehmorteza M, Hamilton G et al (2011) Estimation of hepatic proton-density fat fraction by using MR imaging at 3.0 T. Radiology 258:749–759CrossRefPubMedCentralPubMed
28.
go back to reference Zhong X, Nickel MD, Kannengiesser SAR et al (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72:1353–1365CrossRefPubMed Zhong X, Nickel MD, Kannengiesser SAR et al (2014) Liver fat quantification using a multi-step adaptive fitting approach with multi-echo GRE imaging. Magn Reson Med 72:1353–1365CrossRefPubMed
29.
go back to reference Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRefPubMed Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRefPubMed
30.
go back to reference Courtier J, Rao AG, Anupindi SA (2017) Advanced imaging techniques in pediatric body MRI. Pediatr Radiol 47:522–533CrossRefPubMed Courtier J, Rao AG, Anupindi SA (2017) Advanced imaging techniques in pediatric body MRI. Pediatr Radiol 47:522–533CrossRefPubMed
31.
go back to reference Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMed Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMed
32.
go back to reference Arboleda C, Aguirre-Reyes D, García MP et al (2016) Total liver fat quantification using three-dimensional respiratory self-navigated MRI sequence. Magn Reson Med 76:1400–1409CrossRefPubMed Arboleda C, Aguirre-Reyes D, García MP et al (2016) Total liver fat quantification using three-dimensional respiratory self-navigated MRI sequence. Magn Reson Med 76:1400–1409CrossRefPubMed
33.
go back to reference Motosugi U, Hernando D, Bannas P et al (2015) Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI. J Magn Reson Imaging 42:1241–1248CrossRefPubMedCentralPubMed Motosugi U, Hernando D, Bannas P et al (2015) Quantification of liver fat with respiratory-gated quantitative chemical shift encoded MRI. J Magn Reson Imaging 42:1241–1248CrossRefPubMedCentralPubMed
34.
go back to reference Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed Malamateniou C, Malik SJ, Counsell SJ et al (2013) Motion-compensation techniques in neonatal and fetal MR imaging. AJNR Am J Neuroradiol 34:1124–1136CrossRefPubMed
35.
go back to reference Fujinaga Y, Kitou Y, Ohya A et al (2016) Advantages of radial volumetric breath-hold examination (VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE in liver imaging of volunteers simulating inadequate or no breath-holding ability. Eur Radiol 26:2790–2797CrossRefPubMed Fujinaga Y, Kitou Y, Ohya A et al (2016) Advantages of radial volumetric breath-hold examination (VIBE) with k-space weighted image contrast reconstruction (KWIC) over Cartesian VIBE in liver imaging of volunteers simulating inadequate or no breath-holding ability. Eur Radiol 26:2790–2797CrossRefPubMed
36.
go back to reference Armstrong T, Dregely I, Stemmer A et al (2018) Free-breathing liver fat quantification using a multiecho 3D stack-of-radial technique. Magn Reson Med 79:370–382CrossRefPubMed Armstrong T, Dregely I, Stemmer A et al (2018) Free-breathing liver fat quantification using a multiecho 3D stack-of-radial technique. Magn Reson Med 79:370–382CrossRefPubMed
37.
go back to reference Block KT, Chandarana H, Milla S et al (2014) Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity. J Korean Soc Magn Reson Med 18:87–106CrossRef Block KT, Chandarana H, Milla S et al (2014) Towards routine clinical use of radial stack-of-stars 3D gradient-echo sequences for reducing motion sensitivity. J Korean Soc Magn Reson Med 18:87–106CrossRef
38.
go back to reference Armstrong T, Martin T, Stemmer A, et al (2017) Free-breathing fat quantification in the liver using a multiecho 3D stack-of-radial technique: investigation of motion compensation and quantification accuracy. Proc. Int. Soc. Magn. Reson. Med. 25th. p 363 Armstrong T, Martin T, Stemmer A, et al (2017) Free-breathing fat quantification in the liver using a multiecho 3D stack-of-radial technique: investigation of motion compensation and quantification accuracy. Proc. Int. Soc. Magn. Reson. Med. 25th. p 363
39.
go back to reference Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:1–8CrossRef Breuer FA, Blaimer M, Heidemann RM et al (2005) Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging. Magn Reson Med 53:1–8CrossRef
40.
go back to reference Pineda N, Sharma P, Xu Q et al (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy--a rapid and accurate technique. Radiology 252:568–576CrossRefPubMed Pineda N, Sharma P, Xu Q et al (2009) Measurement of hepatic lipid: high-speed T2-corrected multiecho acquisition at 1H MR spectroscopy--a rapid and accurate technique. Radiology 252:568–576CrossRefPubMed
41.
42.
go back to reference Hernando D, Kellman P, Haldar JP et al (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63:79–90PubMedCentralPubMed Hernando D, Kellman P, Haldar JP et al (2010) Robust water/fat separation in the presence of large field inhomogeneities using a graph cut algorithm. Magn Reson Med 63:79–90PubMedCentralPubMed
44.
go back to reference Gleich DF (2009) Models and algorithms for pagerank sensitivity. Dissertation. Stanford University Gleich DF (2009) Models and algorithms for pagerank sensitivity. Dissertation. Stanford University
45.
go back to reference Liu CY, McKenzie CA, Yu H et al (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58:354–364CrossRefPubMed Liu CY, McKenzie CA, Yu H et al (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58:354–364CrossRefPubMed
46.
go back to reference Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRef Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18:50–60CrossRef
47.
go back to reference Sawilowsky SS (2005) Misconceptions leading to choosing the t test over the Wilcoxon Mann-Whitney test for shift in location parameter. J Mod Appl Stat Methods 4:598–600CrossRef Sawilowsky SS (2005) Misconceptions leading to choosing the t test over the Wilcoxon Mann-Whitney test for shift in location parameter. J Mod Appl Stat Methods 4:598–600CrossRef
48.
49.
go back to reference Williams S (1996) Pearson’s correlation coefficient. N Z Med J 109:38PubMed Williams S (1996) Pearson’s correlation coefficient. N Z Med J 109:38PubMed
50.
go back to reference Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefPubMed Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefPubMed
51.
go back to reference Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMed Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8:135–160CrossRefPubMed
52.
go back to reference Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475CrossRefPubMed Bartlett JW, Frost C (2008) Reliability, repeatability and reproducibility: analysis of measurement errors in continuous variables. Ultrasound Obstet Gynecol 31:466–475CrossRefPubMed
53.
go back to reference Obuchowski NA, Reeves AP, Huang EP et al (2014) Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res 24:68–106CrossRefPubMed Obuchowski NA, Reeves AP, Huang EP et al (2014) Quantitative imaging biomarkers: a review of statistical methods for computer algorithm comparisons. Stat Methods Med Res 24:68–106CrossRefPubMed
54.
55.
go back to reference Yu H, McKenzie CA, Shimakawa A et al (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26:1153–1161CrossRefPubMed Yu H, McKenzie CA, Shimakawa A et al (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26:1153–1161CrossRefPubMed
56.
go back to reference Venkatesh SK, Hennedige T, Johnson GB et al (2017) Imaging patterns and focal lesions in fatty liver: a pictorial review. Abdom Radiol 42:1374–1392CrossRef Venkatesh SK, Hennedige T, Johnson GB et al (2017) Imaging patterns and focal lesions in fatty liver: a pictorial review. Abdom Radiol 42:1374–1392CrossRef
57.
go back to reference Lee H, Jun DW, Kang BK et al (2017) Estimating of hepatic fat amount using MRI proton density fat fraction in a real practice setting. Medicine (Baltimore) 96:e7778CrossRef Lee H, Jun DW, Kang BK et al (2017) Estimating of hepatic fat amount using MRI proton density fat fraction in a real practice setting. Medicine (Baltimore) 96:e7778CrossRef
58.
go back to reference Hamer OW, Aguirre DA, Casola G et al (2006) Fatty liver: imaging patterns and pitfalls. Radiographics 26:1637–1653CrossRefPubMed Hamer OW, Aguirre DA, Casola G et al (2006) Fatty liver: imaging patterns and pitfalls. Radiographics 26:1637–1653CrossRefPubMed
60.
go back to reference Fazeli Dehkordy S, Wolfson T, William Hong C et al (2017) Liver fat reduction following bariatric weight loss surgery is greater in the right lobe of the liver. Proc. Int. Soc. Magn. Reson. Med. 25th. p 123 Fazeli Dehkordy S, Wolfson T, William Hong C et al (2017) Liver fat reduction following bariatric weight loss surgery is greater in the right lobe of the liver. Proc. Int. Soc. Magn. Reson. Med. 25th. p 123
61.
go back to reference Uecker M, Lai P, Murphy MJ et al (2014) ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71:990–1001CrossRefPubMedCentralPubMed Uecker M, Lai P, Murphy MJ et al (2014) ESPIRiT - an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med 71:990–1001CrossRefPubMedCentralPubMed
62.
go back to reference Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMed
63.
go back to reference Horng DE, Hernando D, Reeder SB (2017) Quantification of liver fat in the presence of iron overload. J Magn Reson Imaging 45:428–439CrossRefPubMed Horng DE, Hernando D, Reeder SB (2017) Quantification of liver fat in the presence of iron overload. J Magn Reson Imaging 45:428–439CrossRefPubMed
64.
65.
go back to reference Manco M, Alisi A, Real JMF et al (2011) Early interplay of intra-hepatic iron and insulin resistance in children with non-alcoholic fatty liver disease. J Hepatol 55:647–653CrossRefPubMed Manco M, Alisi A, Real JMF et al (2011) Early interplay of intra-hepatic iron and insulin resistance in children with non-alcoholic fatty liver disease. J Hepatol 55:647–653CrossRefPubMed
66.
go back to reference St Pierre TG, Clark PR, Chua-anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861CrossRefPubMed St Pierre TG, Clark PR, Chua-anusorn W et al (2005) Noninvasive measurement and imaging of liver iron concentrations using proton magnetic resonance. Blood 105:855–861CrossRefPubMed
67.
go back to reference Doyle EK, Toy K, Valdez B et al (2018) Ultra-short echo time images quantify high liver iron. Magn Reson Med 79:1579–1585CrossRefPubMed Doyle EK, Toy K, Valdez B et al (2018) Ultra-short echo time images quantify high liver iron. Magn Reson Med 79:1579–1585CrossRefPubMed
68.
go back to reference Krafft AJ, Loeffler RB, Song R et al (2017) Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 tesla. Magn Reson Med 78:1839–1851CrossRefPubMed Krafft AJ, Loeffler RB, Song R et al (2017) Quantitative ultrashort echo time imaging for assessment of massive iron overload at 1.5 and 3 tesla. Magn Reson Med 78:1839–1851CrossRefPubMed
69.
go back to reference Tipirneni-Sajja A, Krafft AJ, McCarville MB et al (2017) Radial ultrashort TE imaging removes the need for breath-holding in hepatic iron overload quantification by R2* MRI. Am J Roentgenol 209:187–194CrossRef Tipirneni-Sajja A, Krafft AJ, McCarville MB et al (2017) Radial ultrashort TE imaging removes the need for breath-holding in hepatic iron overload quantification by R2* MRI. Am J Roentgenol 209:187–194CrossRef
Metadata
Title
Free-breathing quantification of hepatic fat in healthy children and children with nonalcoholic fatty liver disease using a multi-echo 3-D stack-of-radial MRI technique
Authors
Tess Armstrong
Karrie V. Ly
Smruthi Murthy
Shahnaz Ghahremani
Grace Hyun J. Kim
Kara L. Calkins
Holden H. Wu
Publication date
01-07-2018
Publisher
Springer Berlin Heidelberg
Published in
Pediatric Radiology / Issue 7/2018
Print ISSN: 0301-0449
Electronic ISSN: 1432-1998
DOI
https://doi.org/10.1007/s00247-018-4127-7

Other articles of this Issue 7/2018

Pediatric Radiology 7/2018 Go to the issue