Skip to main content
Top
Published in: Urolithiasis 2/2020

Open Access 01-04-2020 | Original Paper

Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms

Authors: Othmar J. Wess, Juergen Mayer

Published in: Urolithiasis | Issue 2/2020

Login to get access

Abstract

Shock wave lithotripsy is the only non-invasive stone therapy and in clinical use since 1980. In spite of decades with millions of patients treated, the mechanism of fragmentation is still under debate. Detailed knowledge of the fragmentation process is required for improvements regarding safety and efficiency. The purpose of this paper is to gain a deeper insight into the mechanism of fragmentation by drawing attention to basic physical laws of inertia and momentum transfer. Many fragmentation experiments are based on the overall efficiency of multiple shock waves in crushing kidney stones or artificial model stones utilizing small baskets or latex pouches. Due to the high dynamic nature of the fragmentation process, in vitro and in vivo, a detailed action of a single shock wave on a particular stone target is difficult to investigate. We utilized a bifilar stone suspension, which allowed us to observe horizontal movements of model stones, their return to the initial position and orientation for repeated exposure of separate identical shocks. The method does not describe the entire fragmentation process in detail but elucidates a mechanism, which may be effective throughout shock wave lithotripsy in general. Measurements on model stones in water revealed forces in the range of 370 N, acceleration values of 100,000–200,000 m/s2 (≈ 10,000 g) and gained momentum of 3.7 × 10− 4 kg m/s we consider sufficient to break most human urinary stones. Fracture patterns of repeated identical shock waves show typical features supporting spallation (Hopkinson effect) and the mechanism of momentum transfer. Schlieren and photo-elastic images provide a visual impression of spatial stress in a transparent acrylic glass cylinder, cavitation fields outside and at the surface of the cylinder, which are compatible with the inertia model. The proposed mechanism covers coarse as well as fine fragmentation. Collapsing cavitation bubbles may have an impact on the fragmentation process but although expected, a direct action of micro-jets on sample surfaces could not be detected.
Literature
1.
go back to reference Chaussy C, Brendel W, Schmiedt E (1980) Extracoporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268CrossRef Chaussy C, Brendel W, Schmiedt E (1980) Extracoporeally induced destruction of kidney stones by shock waves. Lancet 2:1265–1268CrossRef
2.
go back to reference Zhong P (2013) Shock wave lithotripsy. In: Delale CF (ed) Bubble dynamics & shock waves. Springer, Berlin, pp 291–338CrossRef Zhong P (2013) Shock wave lithotripsy. In: Delale CF (ed) Bubble dynamics & shock waves. Springer, Berlin, pp 291–338CrossRef
3.
go back to reference Rassweiler JJ, Knoll T, Köhrmann K-U, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59:784–796CrossRef Rassweiler JJ, Knoll T, Köhrmann K-U, McAteer JA, Lingeman JE, Cleveland RO, Bailey MR, Chaussy C (2011) Shock wave technology and application: an update. Eur Urol 59:784–796CrossRef
4.
go back to reference Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121(2):1190–1202CrossRef Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121(2):1190–1202CrossRef
5.
go back to reference Cleveland RO, Sapozhnikov OA (2005) Modelling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676CrossRef Cleveland RO, Sapozhnikov OA (2005) Modelling elastic wave propagation in kidney stones with application to shock wave lithotripsy. J Acoust Soc Am 118:2667–2676CrossRef
6.
go back to reference Teichman JMH, Portis AJ, Cecconi PP, Bub WL, Endicott RC, Denes B, Pearle MS, Clayman (2000) In vitro comparison of shock wave lithotripsy machines. J Urol 164 RV:1259–1264CrossRef Teichman JMH, Portis AJ, Cecconi PP, Bub WL, Endicott RC, Denes B, Pearle MS, Clayman (2000) In vitro comparison of shock wave lithotripsy machines. J Urol 164 RV:1259–1264CrossRef
8.
go back to reference Schoch A (1952) Institut für theoretische Physik der Universität Heidelberg. Zur Frage nach dem Impuls einer Schallwelle. Z Naturforschung 7a: 273–279 Schoch A (1952) Institut für theoretische Physik der Universität Heidelberg. Zur Frage nach dem Impuls einer Schallwelle. Z Naturforschung 7a: 273–279
9.
go back to reference Mueller M (1990) Dornier-Lithotripter im Vergleich, Vermessung der Stosswellenfelder und Fragmentationswirkungen. Biomed Tech 35:250–262CrossRef Mueller M (1990) Dornier-Lithotripter im Vergleich, Vermessung der Stosswellenfelder und Fragmentationswirkungen. Biomed Tech 35:250–262CrossRef
10.
go back to reference Pye SO, Parr NJ, Monro EG, Anderson T, McDicken WN (1991) Robust electromagnetic probe for the monitoring of lithotriptor output. Ultrasound Med Biol 17:931–939CrossRef Pye SO, Parr NJ, Monro EG, Anderson T, McDicken WN (1991) Robust electromagnetic probe for the monitoring of lithotriptor output. Ultrasound Med Biol 17:931–939CrossRef
11.
go back to reference Liu Y, Zhong P (2002) BegoStone—a new stone phantom for shock wave lithotripsy research (L). J Acoust Soc Am 112(4):1265–1268CrossRef Liu Y, Zhong P (2002) BegoStone—a new stone phantom for shock wave lithotripsy research (L). J Acoust Soc Am 112(4):1265–1268CrossRef
12.
go back to reference Chaussy C (ed) (1986) Extracorporcal shock wave lithotripsy technical concept, experimental research, and clinical application, 2nd edn. Karger, Basel Chaussy C (ed) (1986) Extracorporcal shock wave lithotripsy technical concept, experimental research, and clinical application, 2nd edn. Karger, Basel
13.
go back to reference Ohl SW, Klaseboer E, Szeri AJ, Khoo BC (2016) Lithotripter shock wave interaction with a bubble near various biomaterials. Phys Med Biol 61:7031–7053CrossRef Ohl SW, Klaseboer E, Szeri AJ, Khoo BC (2016) Lithotripter shock wave interaction with a bubble near various biomaterials. Phys Med Biol 61:7031–7053CrossRef
14.
go back to reference Cunitz BW, Dunmire B, Bailey MR (2017) Characterizing the acoustic output of an ultrasonic propulsion device for urinary stones. IEEE Trans Ultrason Ferroelectr Freq Control 64(12):1818–1827CrossRef Cunitz BW, Dunmire B, Bailey MR (2017) Characterizing the acoustic output of an ultrasonic propulsion device for urinary stones. IEEE Trans Ultrason Ferroelectr Freq Control 64(12):1818–1827CrossRef
15.
go back to reference Harper JD, Cunitz BW, Dunmire B, Lee FC, Sorensen MD, His RS, Thiel J, Wessells H, Lingeman JE, Bailey MR (2016) First in human clinical trial of ultrasonic propulsion of kidney stones. J Urol 195:4 956–964CrossRef Harper JD, Cunitz BW, Dunmire B, Lee FC, Sorensen MD, His RS, Thiel J, Wessells H, Lingeman JE, Bailey MR (2016) First in human clinical trial of ultrasonic propulsion of kidney stones. J Urol 195:4 956–964CrossRef
16.
go back to reference Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol 28(6):769–774CrossRef Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A (2002) The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol 28(6):769–774CrossRef
17.
go back to reference Eisenmenger W (2001) The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 27(5):683–693CrossRef Eisenmenger W (2001) The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol 27(5):683–693CrossRef
18.
go back to reference Chieh J-C, Zhou Y (2016) Shifting the split reflectors to enhance stone fragmentation of shock wave lithotripsy. Ultrasound Med Biol 42(8):1876–1889CrossRef Chieh J-C, Zhou Y (2016) Shifting the split reflectors to enhance stone fragmentation of shock wave lithotripsy. Ultrasound Med Biol 42(8):1876–1889CrossRef
19.
go back to reference International Standard IEC 61846:1998 (1998) Ultrasonics—pressure pulse lithotripters—characteristic of fields International Standard IEC 61846:1998 (1998) Ultrasonics—pressure pulse lithotripters—characteristic of fields
20.
go back to reference Wess O (2005) Shock wave lithotripsy (SWL) and focal size. In: Chaussy C et al (eds) Therapeutic energy applications in urology. Georg Thieme, Stuttgart (ISBN 3-13-134171-8 (GTV), ISBN 1-58890-428-8 TNY) Wess O (2005) Shock wave lithotripsy (SWL) and focal size. In: Chaussy C et al (eds) Therapeutic energy applications in urology. Georg Thieme, Stuttgart (ISBN 3-13-134171-8 (GTV), ISBN 1-58890-428-8 TNY)
21.
go back to reference Evan AP, McAteer J, Williams JC Jr, Willis LR, Bailey MR, Crum LA, Lingeman JE, Cleveland RO (2005) Shock wave physics of lithotripsy: mechanism of shock wave action and progress towards improved shock wave lithotripsy. In: Moore RG (ed) Minimally invasive urologic surgery, 28th edn. Taylor & Francis, London, pp 425–438CrossRef Evan AP, McAteer J, Williams JC Jr, Willis LR, Bailey MR, Crum LA, Lingeman JE, Cleveland RO (2005) Shock wave physics of lithotripsy: mechanism of shock wave action and progress towards improved shock wave lithotripsy. In: Moore RG (ed) Minimally invasive urologic surgery, 28th edn. Taylor & Francis, London, pp 425–438CrossRef
22.
go back to reference Ogan K, Pearle MS (2005) Shock wave lithotripsy for urinary stones and non-calculus applications. In: Moore RG (ed) Minimally invasive urologic surgery. Taylor & Francis, London (Table 27.2, 400 and Table 27.3, 401) Ogan K, Pearle MS (2005) Shock wave lithotripsy for urinary stones and non-calculus applications. In: Moore RG (ed) Minimally invasive urologic surgery. Taylor & Francis, London (Table 27.2, 400 and Table 27.3, 401)
23.
go back to reference Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy in modern lithotripters for removal of ureteral stones? J Endojurol 22(2):249–255CrossRef Tiselius HG (2008) How efficient is extracorporeal shockwave lithotripsy in modern lithotripters for removal of ureteral stones? J Endojurol 22(2):249–255CrossRef
24.
go back to reference Razvi H, Fuller A, Nott L, Mendez-Probst CE, Leistner R, Foell K, Dave S, Denstedt JD (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case–control analysis. J Endourol 26(11):1478–1482CrossRef Razvi H, Fuller A, Nott L, Mendez-Probst CE, Leistner R, Foell K, Dave S, Denstedt JD (2012) Risk factors for perinephric hematoma formation after shockwave lithotripsy: a matched case–control analysis. J Endourol 26(11):1478–1482CrossRef
25.
go back to reference Xing Y, Chen TT, Simmons WN, Sankin G, Cocks FH, Lipkin ME, Preminger, Zhong GM P (2017) Comparison of broad vs narrow focal width lithotripter fields. J Endourol 31(5):502–509CrossRef Xing Y, Chen TT, Simmons WN, Sankin G, Cocks FH, Lipkin ME, Preminger, Zhong GM P (2017) Comparison of broad vs narrow focal width lithotripter fields. J Endourol 31(5):502–509CrossRef
26.
go back to reference Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172:349–354CrossRef Zhou Y, Cocks FH, Preminger GM, Zhong P (2004) The effect of treatment strategy on stone comminution efficiency in shock wave lithotripsy. J Urol 172:349–354CrossRef
27.
go back to reference Chaussy C, Tiselius HG (2018) How can and should we optimize extracorporeal shockwave lithotripsy? Urolithiasis 46(1):3–17CrossRef Chaussy C, Tiselius HG (2018) How can and should we optimize extracorporeal shockwave lithotripsy? Urolithiasis 46(1):3–17CrossRef
Metadata
Title
Fragmentation of brittle material by shock wave lithotripsy. Momentum transfer and inertia: a novel view on fragmentation mechanisms
Authors
Othmar J. Wess
Juergen Mayer
Publication date
01-04-2020
Publisher
Springer Berlin Heidelberg
Published in
Urolithiasis / Issue 2/2020
Print ISSN: 2194-7228
Electronic ISSN: 2194-7236
DOI
https://doi.org/10.1007/s00240-018-1102-6

Other articles of this Issue 2/2020

Urolithiasis 2/2020 Go to the issue

Letter to the Editor

Letter to Editor