Skip to main content
Top
Published in: Nuclear Medicine and Molecular Imaging 6/2018

01-12-2018 | Original Article

FPGA-Based Interface of Digital DAQ System for Double-Scattering Compton Camera

Authors: Soo Mee Kim, Young Soo Kim

Published in: Nuclear Medicine and Molecular Imaging | Issue 6/2018

Login to get access

Abstract

Purpose

The double-scattering Compton camera (DSCC) is a radiation imaging system that can provide both unknown source energy spectra and 3D spatial source distributions. The energies and detection locations measured in coincidence with three CdZnTe (CZT) detectors contribute to reconstructing emission energies and a spatial image based on conical surface integrals. In this study, we developed a digital data acquisition (DAQ) board to support our research into coincidence detection in the DSCC.

Methods

The main components of the digital DAQ board were 12 ADCs and one field programmable gate array (FPGA). The ADCs digitized the analog 96-channel CZT signals at a sampling rate of 50 MHz and transferred the serialized ADC samples and the bit and frame clocks to the FPGA. In order to correctly capture the ADC sample bits in the FPGA, we conducted individual sync calibrations for all the ADC channels to align the bit and frame clocks to the right positions of the ADC sample bits. The FPGA logic design was composed of IDELAY and IDDR components, six shift registers, and bit slip buffer resources.

Results

Using a Deskew test pattern, the delay value of the IDELAY component was determined to align the bit clock to the center of each sample bit. We determined the bit slip in the 12-bit ADC sample using an MSB test pattern by checking where the MSB value of one is located in the captured parallel data.

Conclusions

After sync calibration, we tested the interface between the ADCs and the FPGA with a synthetic analog Gaussian signal. The 96 ADC channels yielded a mean R2 goodness-of-fit value of 0.95 between the Gaussian curve and the captured 12-bit parallel data.
Literature
1.
go back to reference Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.CrossRef Gambhir S. Molecular imaging of cancer with positron emission tomography. Nat Rev Cancer. 2002;2:683–93.CrossRef
2.
go back to reference Kwon H, Becker A-K, Goo J, Cheon G. FDG whole-body PET/MRI in oncology: a systematic review. Nucl Med Mol Imaging. 2017;51:22–31.CrossRef Kwon H, Becker A-K, Goo J, Cheon G. FDG whole-body PET/MRI in oncology: a systematic review. Nucl Med Mol Imaging. 2017;51:22–31.CrossRef
3.
go back to reference Yoo I, Choi E, Chung Y. The current status of SPECT or SPECT/CT in South Korea. Nucl Med Mol Imaging. 2017;51:101–5.CrossRef Yoo I, Choi E, Chung Y. The current status of SPECT or SPECT/CT in South Korea. Nucl Med Mol Imaging. 2017;51:101–5.CrossRef
4.
go back to reference Park S, Jung U, Lee S, Lee D, Kim C. Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed Eng Lett. 2017;7:121–33.CrossRef Park S, Jung U, Lee S, Lee D, Kim C. Contrast-enhanced dual mode imaging: photoacoustic imaging plus more. Biomed Eng Lett. 2017;7:121–33.CrossRef
5.
go back to reference Sajib S, Kwon O, Kim H, Woo E. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments. Biomed Eng Lett. 2018;8:273–82.CrossRef Sajib S, Kwon O, Kim H, Woo E. Electrodeless conductivity tensor imaging (CTI) using MRI: basic theory and animal experiments. Biomed Eng Lett. 2018;8:273–82.CrossRef
6.
go back to reference Todd R, Nightingale J, Everett D. A proposed gamma camera. Nature. 1974;251:132–4.CrossRef Todd R, Nightingale J, Everett D. A proposed gamma camera. Nature. 1974;251:132–4.CrossRef
7.
go back to reference Singh M. An electronically collimated gamma camera for single photon emission computed tomography: part1 and 2. Med Phys. 1983;10:421–7.CrossRef Singh M. An electronically collimated gamma camera for single photon emission computed tomography: part1 and 2. Med Phys. 1983;10:421–7.CrossRef
8.
go back to reference Phillips G. Gamma-ray imaging with Compton cameras. Nucl Instr and Meth. 1995;99:674–7.CrossRef Phillips G. Gamma-ray imaging with Compton cameras. Nucl Instr and Meth. 1995;99:674–7.CrossRef
9.
go back to reference Jiang J, Shimazoe K, Nakamura Y, Takahashi H, Shikaze Y, Nishizawa Y, et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J Nucl Sci Technol. 2016;53(7):1067–75.CrossRef Jiang J, Shimazoe K, Nakamura Y, Takahashi H, Shikaze Y, Nishizawa Y, et al. A prototype of aerial radiation monitoring system using an unmanned helicopter mounting a GAGG scintillator Compton camera. J Nucl Sci Technol. 2016;53(7):1067–75.CrossRef
10.
go back to reference Sato Y, Kawabata K, Ozawa S, Izumi R, Kaburagi M, Tanifuji Y, et al. Radiation imaging system using a Compton gamma-ray imager mounted on a remotely operated machine. IFAC PapersOnLine. 2017;50:1062–6.CrossRef Sato Y, Kawabata K, Ozawa S, Izumi R, Kaburagi M, Tanifuji Y, et al. Radiation imaging system using a Compton gamma-ray imager mounted on a remotely operated machine. IFAC PapersOnLine. 2017;50:1062–6.CrossRef
11.
go back to reference Vetter K, Burks M, Cork C, Cunningham M, Chivers D, Hull E, et al. High-sensitivity Compton imaging with position-sensitive Si and Ge detectors. Nucl Instr and Meth. 2007;579:363–6.CrossRef Vetter K, Burks M, Cork C, Cunningham M, Chivers D, Hull E, et al. High-sensitivity Compton imaging with position-sensitive Si and Ge detectors. Nucl Instr and Meth. 2007;579:363–6.CrossRef
12.
go back to reference Du Y, He Z, Knoll G, Wehe D, Li W. Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instr and Meth. 2001;457:203–11.CrossRef Du Y, He Z, Knoll G, Wehe D, Li W. Evaluation of a Compton scattering camera using 3-D position sensitive CdZnTe detectors. Nucl Instr and Meth. 2001;457:203–11.CrossRef
13.
go back to reference Watanabe S, Tanaka T, Oonuki K, Mitani T, Takeda S, Kishishita T, et al. Development of CdTe pixel detectors for Compton cameras. Nucl Instr and Meth. 2006;567:150–3.CrossRef Watanabe S, Tanaka T, Oonuki K, Mitani T, Takeda S, Kishishita T, et al. Development of CdTe pixel detectors for Compton cameras. Nucl Instr and Meth. 2006;567:150–3.CrossRef
14.
go back to reference Wulf E, Phlips B, Johnson W, Kurfess J, Novikova E. Thick silicon strip detector Compton imager. IEEE Trans Nucl Sci. 2004;51:1997–2003.CrossRef Wulf E, Phlips B, Johnson W, Kurfess J, Novikova E. Thick silicon strip detector Compton imager. IEEE Trans Nucl Sci. 2004;51:1997–2003.CrossRef
15.
go back to reference Yang Y, Gono Y, Motomura S, Enomoto S, Yano Y. A Compton camera for multitracer imaging. IEEE Trans Nucl Sci. 2001;48:656–61.CrossRef Yang Y, Gono Y, Motomura S, Enomoto S, Yano Y. A Compton camera for multitracer imaging. IEEE Trans Nucl Sci. 2001;48:656–61.CrossRef
16.
go back to reference Motomura S, Enomoto S, Haba H, Igarashi K, Gono Y, Yano Y. Gamma-ray Compton imaging of multitracer in biological samples using strip germanium telescope. IEEE Trans Nucl Sci. 2007;54:710–7.CrossRef Motomura S, Enomoto S, Haba H, Igarashi K, Gono Y, Yano Y. Gamma-ray Compton imaging of multitracer in biological samples using strip germanium telescope. IEEE Trans Nucl Sci. 2007;54:710–7.CrossRef
17.
go back to reference Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J Anal At Spectrom. 2008;23:1089–92.CrossRef Motomura S, Kanayama Y, Haba H, Watanabe Y, Enomoto S. Multiple molecular simultaneous imaging in a live mouse using semiconductor Compton camera. J Anal At Spectrom. 2008;23:1089–92.CrossRef
18.
go back to reference Seo H, Kim C, Park J, Kim J, Lee J, Lee C, et al. Multitracing capability of double-scattering Compton imager with NaI(Tl) scintillator absorber. IEEE Trans Nucl Sci. 2010;57:1420–5.CrossRef Seo H, Kim C, Park J, Kim J, Lee J, Lee C, et al. Multitracing capability of double-scattering Compton imager with NaI(Tl) scintillator absorber. IEEE Trans Nucl Sci. 2010;57:1420–5.CrossRef
19.
go back to reference Peterson S, Robertson D, Polf J. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys Med Biol. 2010;55:6841–56.CrossRef Peterson S, Robertson D, Polf J. Optimizing a three-stage Compton camera for measuring prompt gamma rays emitted during proton radiotherapy. Phys Med Biol. 2010;55:6841–56.CrossRef
20.
go back to reference Richard M-H, Chevallier M, Dauvergne D, Freud N, Henriquet P, Le Foulher F, et al. Design guidelines for a double scattering Compton camera for prompt-γ imaging during ion beam therapy: a Monte Carlo simulation study. IEEE Trans Nucl Sci. 2011;58:87–94.CrossRef Richard M-H, Chevallier M, Dauvergne D, Freud N, Henriquet P, Le Foulher F, et al. Design guidelines for a double scattering Compton camera for prompt-γ imaging during ion beam therapy: a Monte Carlo simulation study. IEEE Trans Nucl Sci. 2011;58:87–94.CrossRef
21.
go back to reference Kamea T, Enomoto R, Hanada N. A new method to measure energy, direction, and polarization of gamma-rays. Nucl Inst Methods Phys Res A. 1987;260:254–7.CrossRef Kamea T, Enomoto R, Hanada N. A new method to measure energy, direction, and polarization of gamma-rays. Nucl Inst Methods Phys Res A. 1987;260:254–7.CrossRef
22.
go back to reference Kamea T, Hanada H. Prototype design of multiple Compton gamma-ray camera. IEEE Trans Nucl Sci. 1988;35:352–5.CrossRef Kamea T, Hanada H. Prototype design of multiple Compton gamma-ray camera. IEEE Trans Nucl Sci. 1988;35:352–5.CrossRef
23.
go back to reference Dogan N, Wehe DK, Knoll GF. Multiple Compton scattering gamma ray imaging camera. Nucl Inst Methods Phys Res A. 1990;299:501–6.CrossRef Dogan N, Wehe DK, Knoll GF. Multiple Compton scattering gamma ray imaging camera. Nucl Inst Methods Phys Res A. 1990;299:501–6.CrossRef
24.
go back to reference Smith B. Reconstruction methods and completeness conditions for two Compton data models. J Opt Soc Am A. 2005;22:445–59.CrossRef Smith B. Reconstruction methods and completeness conditions for two Compton data models. J Opt Soc Am A. 2005;22:445–59.CrossRef
25.
go back to reference Kim S, Lee J, Lee C, Kim C, Lee M, Lee D, et al. Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. J Opt Soc Am A Opt Image Sci Vis. 2010;55:5007–27. Kim S, Lee J, Lee C, Kim C, Lee M, Lee D, et al. Fully three-dimensional OSEM-based image reconstruction for Compton imaging using optimized ordering schemes. J Opt Soc Am A Opt Image Sci Vis. 2010;55:5007–27.
26.
go back to reference Kim S, Seo H, Park J, Kim C, Lee C, Lee S-J, et al. Resolution recovery reconstruction for a Compton camera. Phys Med Biol. 2013;58:2823–40.CrossRef Kim S, Seo H, Park J, Kim C, Lee C, Lee S-J, et al. Resolution recovery reconstruction for a Compton camera. Phys Med Biol. 2013;58:2823–40.CrossRef
27.
go back to reference Ko G, Yoon H, Kwon S, Hong S, Lee D, Lee J. Development of FPGA-based coincidence units with veto function. Biomed Eng Lett. 2011;1:27–31.CrossRef Ko G, Yoon H, Kwon S, Hong S, Lee D, Lee J. Development of FPGA-based coincidence units with veto function. Biomed Eng Lett. 2011;1:27–31.CrossRef
Metadata
Title
FPGA-Based Interface of Digital DAQ System for Double-Scattering Compton Camera
Authors
Soo Mee Kim
Young Soo Kim
Publication date
01-12-2018
Publisher
Springer Berlin Heidelberg
Published in
Nuclear Medicine and Molecular Imaging / Issue 6/2018
Print ISSN: 1869-3474
Electronic ISSN: 1869-3482
DOI
https://doi.org/10.1007/s13139-018-0551-8

Other articles of this Issue 6/2018

Nuclear Medicine and Molecular Imaging 6/2018 Go to the issue