Skip to main content
Top
Published in: Journal of Experimental & Clinical Cancer Research 1/2017

Open Access 01-12-2017 | Research

FOXA1 inhibits hepatocellular carcinoma progression by suppressing PIK3R1 expression in male patients

Authors: Shujiao He, Junyi Zhang, Wan Zhang, Fengsheng Chen, Rongcheng Luo

Published in: Journal of Experimental & Clinical Cancer Research | Issue 1/2017

Login to get access

Abstract

Background

Forkhead box A1 (FOXA1) expression is associated with various types of tumors; however, the function and underlying mechanism of FOXA1 in the development of hepatocellular carcinoma (HCC) remains obscure.

Methods

Here, we investigated the role of FOXA1 in the development of HCC by applying gene function gain and loss analysis to HepG2 and Hep3B cell lines, and comparing outcomes with those of clinical HCC samples.

Results

Phosphoinositide-3-kinase regulatory subunit 1 (PIK3R1), which encodes protein PI3Kp85 (p85), was identified as a FOXA1 target gene. Analyses of the mechanism and function revealed that FOXA1 suppresses hepatocellular carcinoma cell viability and motility by inhibiting PI3K/Akt signaling through direct inhibition of PIK3R1 transcription. Moreover, in clinical samples from male HCC patients, FOXA1 expression was much lower, whereas PI3Kp85 levels were much higher in tumor than in non-tumor tissues. Elevated PI3Kp85 is an unfavorable factor in HCC.

Conclusions

As a tumor suppressor, FOXA1 targets PIK3R1 directly to inhibit PI3K/Akt signaling pathway, thus exerting a negative regulatory effect on proliferation, migration, and invasion of HCC in male patients.
Appendix
Available only for authorised users
Literature
1.
go back to reference Faloppi L, Scartozzi M, Maccaroni E, Di Pietro PM, Berardi R, Del PM, Cascinu S. Evolving strategies for the treatment of hepatocellular carcinoma: from clinical-guided to molecularly-tailored therapeutic options. Cancer Treat Rev. 2011;37:169–77.CrossRefPubMed Faloppi L, Scartozzi M, Maccaroni E, Di Pietro PM, Berardi R, Del PM, Cascinu S. Evolving strategies for the treatment of hepatocellular carcinoma: from clinical-guided to molecularly-tailored therapeutic options. Cancer Treat Rev. 2011;37:169–77.CrossRefPubMed
2.
go back to reference Liu Y, Song L, Ni H, Sun L, Jiao W, Chen L, Zhou Q, Shen T, Cui H, Gao T, Li J. ERBB4 acts as a suppressor in the development of hepatocellular carcinoma. Carcinogenesis. 2017;38:465–73.CrossRefPubMed Liu Y, Song L, Ni H, Sun L, Jiao W, Chen L, Zhou Q, Shen T, Cui H, Gao T, Li J. ERBB4 acts as a suppressor in the development of hepatocellular carcinoma. Carcinogenesis. 2017;38:465–73.CrossRefPubMed
3.
go back to reference Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2016; Sia D, Villanueva A, Friedman SL, Llovet JM. Liver cancer cell of origin, molecular class, and effects on patient prognosis. Gastroenterology. 2016;
4.
go back to reference Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012;12:381–5.CrossRefPubMed Jozwik KM, Carroll JS. Pioneer factors in hormone-dependent cancers. Nat Rev Cancer. 2012;12:381–5.CrossRefPubMed
5.
go back to reference Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med. 2008;14(8):828–36.CrossRefPubMedPubMedCentral Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH. Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med. 2008;14(8):828–36.CrossRefPubMedPubMedCentral
7.
go back to reference Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L, Liu T, Brown M, Meyer CA, Liu XS. Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–62.CrossRefPubMed Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L, Liu T, Brown M, Meyer CA, Liu XS. Cistrome data browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res. 2017;45:D658–62.CrossRefPubMed
8.
go back to reference Yang JH, Li JH, Jiang S, Zhou H, ChIPBase QLH. A database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2012;41:D177–87.CrossRefPubMedPubMedCentral Yang JH, Li JH, Jiang S, Zhou H, ChIPBase QLH. A database for decoding the transcriptional regulation of long non-coding RNA and microRNA genes from ChIP-Seq data. Nucleic Acids Res. 2012;41:D177–87.CrossRefPubMedPubMedCentral
9.
go back to reference Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, Wu D, Liu L. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology. 2015;148:415–26.CrossRefPubMed Cao C, Sun J, Zhang D, Guo X, Xie L, Li X, Wu D, Liu L. The long intergenic noncoding RNA UFC1, a target of MicroRNA 34a, interacts with the mRNA stabilizing protein HuR to increase levels of beta-catenin in HCC cells. Gastroenterology. 2015;148:415–26.CrossRefPubMed
10.
go back to reference Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 2010;70:2115–25.CrossRefPubMedPubMedCentral Song Y, Washington MK, Crawford HC. Loss of FOXA1/2 is essential for the epithelial-to-mesenchymal transition in pancreatic cancer. Cancer Res. 2010;70:2115–25.CrossRefPubMedPubMedCentral
11.
go back to reference Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30:3019–27.CrossRefPubMedPubMedCentral Robinson JL, Macarthur S, Ross-Innes CS, Tilley WD, Neal DE, Mills IG, Carroll JS. Androgen receptor driven transcription in molecular apocrine breast cancer is mediated by FoxA1. EMBO J. 2011;30:3019–27.CrossRefPubMedPubMedCentral
12.
go back to reference Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30:3962–76.CrossRefPubMedPubMedCentral Sahu B, Laakso M, Ovaska K, Mirtti T, Lundin J, Rannikko A, Sankila A, Turunen JP, Lundin M, Konsti J, Vesterinen T, Nordling S, Kallioniemi O, Hautaniemi S, Janne OA. Dual role of FoxA1 in androgen receptor binding to chromatin, androgen signalling and prostate cancer. EMBO J. 2011;30:3962–76.CrossRefPubMedPubMedCentral
13.
go back to reference Chen F, Chen GK, Millikan RC, John EM, Ambrosone CB, Bernstein L, Zheng W, JJ H, Ziegler RG, Deming SL, Bandera EV, Nyante S, Palmer JR, Rebbeck TR, Ingles SA, Press MF, Rodriguez-Gil JL, Chanock SJ, Le Marchand L, Kolonel LN, Henderson BE, Stram DO, Haiman CA. Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Hum Mol Genet. 2011;20:4491–503.CrossRefPubMedPubMedCentral Chen F, Chen GK, Millikan RC, John EM, Ambrosone CB, Bernstein L, Zheng W, JJ H, Ziegler RG, Deming SL, Bandera EV, Nyante S, Palmer JR, Rebbeck TR, Ingles SA, Press MF, Rodriguez-Gil JL, Chanock SJ, Le Marchand L, Kolonel LN, Henderson BE, Stram DO, Haiman CA. Fine-mapping of breast cancer susceptibility loci characterizes genetic risk in African Americans. Hum Mol Genet. 2011;20:4491–503.CrossRefPubMedPubMedCentral
14.
go back to reference Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen Receptor-Independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 2013;73:3725–36.CrossRefPubMedPubMedCentral Jin HJ, Zhao JC, Ogden I, Bergan RC, Yu J. Androgen Receptor-Independent function of FoxA1 in prostate cancer metastasis. Cancer Res. 2013;73:3725–36.CrossRefPubMedPubMedCentral
15.
go back to reference Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene. 2005;24:8277–90.CrossRefPubMed Liu YN, Lee WW, Wang CY, Chao TH, Chen Y, Chen JH. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene. 2005;24:8277–90.CrossRefPubMed
16.
go back to reference Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Reprogramming FX. Transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.CrossRefPubMedPubMedCentral Wang D, Garcia-Bassets I, Benner C, Li W, Su X, Zhou Y, Qiu J, Liu W, Kaikkonen MU, Ohgi KA, Glass CK, Rosenfeld MG, Reprogramming FX. Transcription by distinct classes of enhancers functionally defined by eRNA. Nature. 2011;474:390–4.CrossRefPubMedPubMedCentral
18.
go back to reference Kanamoto N, Tagami T, Ueda-Sakane Y, Sone M, Miura M, Yasoda A, Tamura N, Arai H, Nakao K. Forkhead box A1 (FOXA1) and A2 (FOXA2) oppositely regulate human type 1 iodothyronine deiodinase gene in liver. Endocrinology. 2012;153:492–500.CrossRefPubMed Kanamoto N, Tagami T, Ueda-Sakane Y, Sone M, Miura M, Yasoda A, Tamura N, Arai H, Nakao K. Forkhead box A1 (FOXA1) and A2 (FOXA2) oppositely regulate human type 1 iodothyronine deiodinase gene in liver. Endocrinology. 2012;153:492–500.CrossRefPubMed
20.
go back to reference Nandini D. Pradip, Brian LJ. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials. Pharmacol Ther. 2017; Nandini D. Pradip, Brian LJ. PI3K-AKT-mTOR inhibitors in breast cancers: from tumor cell signaling to clinical trials. Pharmacol Ther. 2017;
21.
go back to reference Khotskaya YB. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:58–66. Khotskaya YB. Targeting TRK family proteins in cancer. Pharmacol Ther. 2017;173:58–66.
23.
go back to reference Psyrri A, Lee JW, Pectasides E, Vassilakopoulou M, Kosmidis EK, Burtness BA, Rimm DL, Wanebo HJ, Forastiere AA. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: eastern cooperative oncology group E2303. Clin Cancer Res. 2014;20:3023–32.CrossRefPubMedPubMedCentral Psyrri A, Lee JW, Pectasides E, Vassilakopoulou M, Kosmidis EK, Burtness BA, Rimm DL, Wanebo HJ, Forastiere AA. Prognostic biomarkers in phase II trial of cetuximab-containing induction and chemoradiation in resectable HNSCC: eastern cooperative oncology group E2303. Clin Cancer Res. 2014;20:3023–32.CrossRefPubMedPubMedCentral
24.
go back to reference Yu W, Honisch S, Schmidt S, Yan J, Schmid E, Alkahtani S, AlKahtane AA, Alarifi S, Stournaras C, Lang F. Chorein sensitive Orai1 expression and store operated Ca2+ entry in rhabdomyosarcoma cells. Cell Physiol Biochem. 2016;40:1141–52.CrossRefPubMed Yu W, Honisch S, Schmidt S, Yan J, Schmid E, Alkahtani S, AlKahtane AA, Alarifi S, Stournaras C, Lang F. Chorein sensitive Orai1 expression and store operated Ca2+ entry in rhabdomyosarcoma cells. Cell Physiol Biochem. 2016;40:1141–52.CrossRefPubMed
Metadata
Title
FOXA1 inhibits hepatocellular carcinoma progression by suppressing PIK3R1 expression in male patients
Authors
Shujiao He
Junyi Zhang
Wan Zhang
Fengsheng Chen
Rongcheng Luo
Publication date
01-12-2017
Publisher
BioMed Central
Published in
Journal of Experimental & Clinical Cancer Research / Issue 1/2017
Electronic ISSN: 1756-9966
DOI
https://doi.org/10.1186/s13046-017-0646-6

Other articles of this Issue 1/2017

Journal of Experimental & Clinical Cancer Research 1/2017 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine