Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2023

Open Access 01-12-2023 | Folic Acid | Research

Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade

Authors: Alaa Hamed, Doaa Ghareeb, Tarek M. Mohamed, Mahmoud Hamed, Mohammed S. Nofal, M. Gaber

Published in: BMC Complementary Medicine and Therapies | Issue 1/2023

Login to get access

Abstract

Background

Methotrexate (MTX) is a common chemotherapeutic drug that inhibits DNA synthesis and induces apoptosis. Treatment with MTX increased CD73 expression, which leads to higher levels of extracellular adenosine. Adenosine levels are also high in the tumor microenvironment through Cancer cells metabolism. That promotes the survival of cancer cells and contributes to tumor immune evasion through the Adenosine 2a Receptor. A2A receptor antagonists are an emerging class of agents that treat cancers by enhancing immunotherapy, both as monotherapy and in combination with other therapeutic agents. Caffeine is an adenosine receptor antagonist. Herein, we demonstrate the ability of a novel well prepared and characterized nano formula CAF-FA-CS-NPs (D4) for A2aR blockade when combination with MTX to improve its antitumor efficacy by enhancing the immune system and eliminating immune suppression.

Methods

CAF-FA-CS-NPs (D4) were prepared and characterized for particle size, loading efficiency, and release profile. Molecular docking was used to validate the binding affinity of caffeine and folic acid to A2A receptor. The effects of the nano formula were evaluated on human liver cancer cells (HepG2), breast cancer cells (MCF-7), and MDA-MB-231, as well as normal human cells (WI-38). Different combination ratios of MTX and D4 were studied to identify the optimal combination for further genetic studies.

Results

Molecular docking results validated that caffeine and folic acid have binding affinity to A2A receptor. The CS-NPs were successfully prepared using ionic gelation method, with caffeine and folic acid being loaded and conjugated to the nanoparticles through electrostatic interactions. The CAF loading capacity in D4 was 77.9 ± 4.37% with an encapsulation efficiency of 98.5 ± 0.37. The particle size was optimized through ratio variations. The resulting nanoparticles were fully characterized. The results showed that (D4) had antioxidant activity and cytotoxicity against different cancer cells. The combination of D4 with MTX (IC50 D4 + 0.5 IC50 MTX) resulted in the downregulation of Bcl-2, FOXP3, CD39, and CD73 gene expression levels and upregulation of Bax and A2AR gene expression levels in HepG2 cells.

Conclusions

This study suggests that CAF-FA-CS-NPs (D4) in combination with MTX may be a promising candidate for cancer immunotherapy, by inhibiting A2aR signaling and leading to improved immune activation and anti-tumor activity of MTX.
Literature
1.
go back to reference Diab T, Mohamed TM, Hamed A, Gaber M. Induction of apoptosis by nano-synthesized complexes of H2L and its Cu (II) complex in human hepatocellular carcinoma cells. Anti-Cancer Agents in Med Chem. 2021;21(9):1151–9.CrossRef Diab T, Mohamed TM, Hamed A, Gaber M. Induction of apoptosis by nano-synthesized complexes of H2L and its Cu (II) complex in human hepatocellular carcinoma cells. Anti-Cancer Agents in Med Chem. 2021;21(9):1151–9.CrossRef
2.
go back to reference Abdellatif AA, Abdelfattah A, Younis MA, Aldalaan SM, Tawfeek HM. Chitosan-capped silver nanoparticles with potent and selective intrinsic activity against the breast cancer cells. Nanotechnol Rev. 2023;12(1):20220546.CrossRef Abdellatif AA, Abdelfattah A, Younis MA, Aldalaan SM, Tawfeek HM. Chitosan-capped silver nanoparticles with potent and selective intrinsic activity against the breast cancer cells. Nanotechnol Rev. 2023;12(1):20220546.CrossRef
3.
go back to reference Poy D, Ebrahimi Shahemabadi H, Akbarzadeh A, Moradi-Sardareh H, Ebrahimifar M. Carboplatin liposomal nanoparticles: Preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment. Int J Polym Mater Polym Biomater. 2018;67(6):367–70.CrossRef Poy D, Ebrahimi Shahemabadi H, Akbarzadeh A, Moradi-Sardareh H, Ebrahimifar M. Carboplatin liposomal nanoparticles: Preparation, characterization, and cytotoxicity effects on lung cancer in vitro environment. Int J Polym Mater Polym Biomater. 2018;67(6):367–70.CrossRef
4.
go back to reference Mukhtar M, Ezra Manicum A-L, Shojaei Barjouei M, Eshaghi Malekshah R, Behzadmehr R, Rahdar A, et al. Nanocarriers for methotrexate delivery/codelivery in the frame of cancer diagnostics and treatment: a review. Front Biomater Sci. 2023;2:1200670.CrossRef Mukhtar M, Ezra Manicum A-L, Shojaei Barjouei M, Eshaghi Malekshah R, Behzadmehr R, Rahdar A, et al. Nanocarriers for methotrexate delivery/codelivery in the frame of cancer diagnostics and treatment: a review. Front Biomater Sci. 2023;2:1200670.CrossRef
5.
go back to reference Fei W, Zhao Y, Wu X, Sun D, Yao Y, Wang F, et al. Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J Nanobiotechnol. 2021;19(1):1–21.CrossRef Fei W, Zhao Y, Wu X, Sun D, Yao Y, Wang F, et al. Nucleoside transporter-guided cytarabine-conjugated liposomes for intracellular methotrexate delivery and cooperative choriocarcinoma therapy. J Nanobiotechnol. 2021;19(1):1–21.CrossRef
6.
go back to reference Rajagopalan PR, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci. 2002;99(21):13481–6.PubMedPubMedCentralCrossRef Rajagopalan PR, Zhang Z, McCourt L, Dwyer M, Benkovic SJ, Hammes GG. Interaction of dihydrofolate reductase with methotrexate: ensemble and single-molecule kinetics. Proc Natl Acad Sci. 2002;99(21):13481–6.PubMedPubMedCentralCrossRef
7.
go back to reference Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47(2–3):247–57.PubMedCrossRef Genestier L, Paillot R, Quemeneur L, Izeradjene K, Revillard J-P. Mechanisms of action of methotrexate. Immunopharmacology. 2000;47(2–3):247–57.PubMedCrossRef
8.
go back to reference Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate. Bull NYU Hosp Jt Dis. 2007;65(3):168–73.PubMed Tian H, Cronstein BN. Understanding the mechanisms of action of methotrexate. Bull NYU Hosp Jt Dis. 2007;65(3):168–73.PubMed
9.
go back to reference Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21(10):3483.PubMedPubMedCentralCrossRef Koźmiński P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21(10):3483.PubMedPubMedCentralCrossRef
10.
go back to reference Barani M, Reza Hajinezhad M, Sargazi S, Zeeshan M, Rahdar A, Pandey S, et al. Simulation, in vitro, and in vivo cytotoxicity assessments of methotrexate-loaded pH-responsive nanocarriers. Polymers. 2021;13(18):3153.PubMedPubMedCentralCrossRef Barani M, Reza Hajinezhad M, Sargazi S, Zeeshan M, Rahdar A, Pandey S, et al. Simulation, in vitro, and in vivo cytotoxicity assessments of methotrexate-loaded pH-responsive nanocarriers. Polymers. 2021;13(18):3153.PubMedPubMedCentralCrossRef
11.
go back to reference Ochaion A, Bar-Yehuda S, Cohn S, Del Valle L, Perez-Liz G, Madi L, et al. Methotrexate enhances the anti-inflammatory effect of CF101 via up-regulation of the A 3 adenosine receptor expression. Arthritis Res Ther. 2006;8:1–12.CrossRef Ochaion A, Bar-Yehuda S, Cohn S, Del Valle L, Perez-Liz G, Madi L, et al. Methotrexate enhances the anti-inflammatory effect of CF101 via up-regulation of the A 3 adenosine receptor expression. Arthritis Res Ther. 2006;8:1–12.CrossRef
12.
go back to reference Sullivan GW. Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig (London, England: 2000). 2003;4(11):1313–9. Sullivan GW. Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig (London, England: 2000). 2003;4(11):1313–9.
13.
go back to reference Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72.PubMedCrossRef Cronstein BN. Low-dose methotrexate: a mainstay in the treatment of rheumatoid arthritis. Pharmacol Rev. 2005;57(2):163–72.PubMedCrossRef
14.
go back to reference Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson S, Ohta A. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol. 2008;153(S1):S457–64.PubMedPubMedCentralCrossRef Sitkovsky M, Lukashev D, Deaglio S, Dwyer K, Robson S, Ohta A. Adenosine A2A receptor antagonists: blockade of adenosinergic effects and T regulatory cells. Br J Pharmacol. 2008;153(S1):S457–64.PubMedPubMedCentralCrossRef
16.
go back to reference Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou J, Bensussan A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene. 2013;32(14):1743–51.PubMedCrossRef Bastid J, Cottalorda-Regairaz A, Alberici G, Bonnefoy N, Eliaou J, Bensussan A. ENTPD1/CD39 is a promising therapeutic target in oncology. Oncogene. 2013;32(14):1743–51.PubMedCrossRef
17.
go back to reference Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73.PubMedCrossRef Chalmin F, Mignot G, Bruchard M, Chevriaux A, Végran F, Hichami A, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression. Immunity. 2012;36(3):362–73.PubMedCrossRef
18.
go back to reference Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc Natl Acad Sci. 2009;106(26):10684–9.PubMedPubMedCentralCrossRef Ahmad A, Ahmad S, Glover L, Miller SM, Shannon JM, Guo X, et al. Adenosine A2A receptor is a unique angiogenic target of HIF-2α in pulmonary endothelial cells. Proc Natl Acad Sci. 2009;106(26):10684–9.PubMedPubMedCentralCrossRef
19.
go back to reference Mediavilla-Varela M, Luddy K, Noyes D, Khalil FK, Neuger AM, Soliman H, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther. 2013;14(9):860–8.PubMedPubMedCentralCrossRef Mediavilla-Varela M, Luddy K, Noyes D, Khalil FK, Neuger AM, Soliman H, et al. Antagonism of adenosine A2A receptor expressed by lung adenocarcinoma tumor cells and cancer associated fibroblasts inhibits their growth. Cancer Biol Ther. 2013;14(9):860–8.PubMedPubMedCentralCrossRef
21.
go back to reference de Lourdes M-G, García-Rocha R, Morales-Ramírez O, Montesinos JJ, Weiss-Steider B, Hernández-Montes J, et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J Transl Med. 2016;14(1):1–14. de Lourdes M-G, García-Rocha R, Morales-Ramírez O, Montesinos JJ, Weiss-Steider B, Hernández-Montes J, et al. Mesenchymal stromal cells derived from cervical cancer produce high amounts of adenosine to suppress cytotoxic T lymphocyte functions. J Transl Med. 2016;14(1):1–14.
22.
go back to reference Sitkovsky MV, Ohta A. The ‘danger’sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. 2005;26(6):299–304.PubMedCrossRef Sitkovsky MV, Ohta A. The ‘danger’sensors that STOP the immune response: the A2 adenosine receptors? Trends Immunol. 2005;26(6):299–304.PubMedCrossRef
23.
go back to reference Leone RD, Lo Y-C, Powell JD. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J. 2015;13:265–72.PubMedPubMedCentralCrossRef Leone RD, Lo Y-C, Powell JD. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy. Comput Struct Biotechnol J. 2015;13:265–72.PubMedPubMedCentralCrossRef
24.
go back to reference Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6:1–9.CrossRef Leone RD, Emens LA. Targeting adenosine for cancer immunotherapy. J Immunother Cancer. 2018;6:1–9.CrossRef
25.
go back to reference Congreve M, Brown GA, Borodovsky A, Lamb ML. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discov. 2018;13(11):997–1003.PubMedCrossRef Congreve M, Brown GA, Borodovsky A, Lamb ML. Targeting adenosine A2A receptor antagonism for treatment of cancer. Expert Opin Drug Discov. 2018;13(11):997–1003.PubMedCrossRef
26.
go back to reference Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw. 2019;19(4):e23 PubMed PMID: 31501711. Pubmed Central PMCID: 6722273.PubMedPubMedCentralCrossRef Arab S, Hadjati J. Adenosine Blockage in Tumor Microenvironment and Improvement of Cancer Immunotherapy. Immune Netw. 2019;19(4):e23 PubMed PMID: 31501711. Pubmed Central PMCID: 6722273.PubMedPubMedCentralCrossRef
27.
go back to reference Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A. 2006;103(35):13132–7 PubMed PMID: 16916931. Pubmed Central PMCID: 1559765.PubMedPubMedCentralCrossRef Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci U S A. 2006;103(35):13132–7 PubMed PMID: 16916931. Pubmed Central PMCID: 1559765.PubMedPubMedCentralCrossRef
28.
go back to reference Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A. 2013;110(36):14711–6 PubMed PMID: 23964122. Pubmed Central PMCID: 3767556.PubMedPubMedCentralCrossRef Beavis PA, Divisekera U, Paget C, Chow MT, John LB, Devaud C, et al. Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors. Proc Natl Acad Sci U S A. 2013;110(36):14711–6 PubMed PMID: 23964122. Pubmed Central PMCID: 3767556.PubMedPubMedCentralCrossRef
29.
go back to reference Fernández-Dueñas V, Gómez-Soler M, López-Cano M, Taura JJ, Ledent C, Watanabe M, et al. Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS Chem Biol. 2014;9(11):2496–501.PubMedPubMedCentralCrossRef Fernández-Dueñas V, Gómez-Soler M, López-Cano M, Taura JJ, Ledent C, Watanabe M, et al. Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS Chem Biol. 2014;9(11):2496–501.PubMedPubMedCentralCrossRef
30.
go back to reference Leone RD, Sun I-M, Oh M-H, Sun I-H, Wen J, Englert J, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018;67:1271–84.PubMedCrossRef Leone RD, Sun I-M, Oh M-H, Sun I-H, Wen J, Englert J, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models. Cancer Immunol Immunother. 2018;67:1271–84.PubMedCrossRef
31.
go back to reference Chiappori A, Williams C, Creelan B, Tanvetyanon T, Gray J, Haura E, et al. P1. 04–32 Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J Thoracic Oncol. 2018;13(10):S538.CrossRef Chiappori A, Williams C, Creelan B, Tanvetyanon T, Gray J, Haura E, et al. P1. 04–32 Phase I/II study of the A2AR antagonist NIR178 (PBF-509), an oral immunotherapy, in patients (pts) with advanced NSCLC. J Thoracic Oncol. 2018;13(10):S538.CrossRef
32.
go back to reference Bendell J, Bauer T, Patel M, Falchook G, Karlix JL, Lim E, et al. Evidence of immune activation in the first-in-human phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors. Breast. 2019;2:5. Bendell J, Bauer T, Patel M, Falchook G, Karlix JL, Lim E, et al. Evidence of immune activation in the first-in-human phase Ia dose escalation study of the adenosine 2a receptor antagonist, AZD4635, in patients with advanced solid tumors. Breast. 2019;2:5.
33.
go back to reference Garcia-Lorenzo E, Moreno V. Targeting the adenosine 2A receptor in non-small cell lung cancer: shooting with blank bullets? Transl Lung Cancer Res. 2023;12(4):653–6 PubMed PMID: 37197628. Pubmed Central PMCID: 10183394.PubMedPubMedCentralCrossRef Garcia-Lorenzo E, Moreno V. Targeting the adenosine 2A receptor in non-small cell lung cancer: shooting with blank bullets? Transl Lung Cancer Res. 2023;12(4):653–6 PubMed PMID: 37197628. Pubmed Central PMCID: 10183394.PubMedPubMedCentralCrossRef
34.
go back to reference Xu H, Van der Jeught K, Zhou Z, Zhang L, Yu T, Sun Y, et al. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Investig. 2021;131(10):e146832.PubMedPubMedCentralCrossRef Xu H, Van der Jeught K, Zhou Z, Zhang L, Yu T, Sun Y, et al. Atractylenolide I enhances responsiveness to immune checkpoint blockade therapy by activating tumor antigen presentation. J Clin Investig. 2021;131(10):e146832.PubMedPubMedCentralCrossRef
35.
go back to reference Ventola CL. Cancer immunotherapy, part 1: current strategies and agents. 2017;42(6):375. Ventola CL. Cancer immunotherapy, part 1: current strategies and agents. 2017;42(6):375.
36.
go back to reference Weiner LM. Cancer immunology for the clinician. Clin Adv Hematol Oncol. 2015;13(5):299–306.PubMed Weiner LM. Cancer immunology for the clinician. Clin Adv Hematol Oncol. 2015;13(5):299–306.PubMed
37.
go back to reference Ukena D, Schudt C, Sybrecht GW. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem Pharmacol. 1993;45(4):847–51.PubMedCrossRef Ukena D, Schudt C, Sybrecht GW. Adenosine receptor-blocking xanthines as inhibitors of phosphodiesterase isozymes. Biochem Pharmacol. 1993;45(4):847–51.PubMedCrossRef
38.
go back to reference Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916–20.PubMedCrossRef Ohta A, Sitkovsky M. Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature. 2001;414(6866):916–20.PubMedCrossRef
40.
go back to reference Eini H, Frishman V, Yulzari R, Kachko L, Lewis EC, Chaimovitz C, et al. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. Biochem Pharmacol. 2015;98(1):110–8.PubMedCrossRef Eini H, Frishman V, Yulzari R, Kachko L, Lewis EC, Chaimovitz C, et al. Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor. Biochem Pharmacol. 2015;98(1):110–8.PubMedCrossRef
41.
go back to reference Osarieme ED, Modupe DT, Oluchukwu OP. The anticancer activity of caffeine-a review. Arch Clin Biomed Res. 2019;3:326–42. Osarieme ED, Modupe DT, Oluchukwu OP. The anticancer activity of caffeine-a review. Arch Clin Biomed Res. 2019;3:326–42.
42.
go back to reference Vyas LK, Tapar KK, Nema RK, Parashar AK. Development and characterization of topical liposomal gel formulation for anti-cellulite activity. Measurement. 2013;15:18. Vyas LK, Tapar KK, Nema RK, Parashar AK. Development and characterization of topical liposomal gel formulation for anti-cellulite activity. Measurement. 2013;15:18.
43.
go back to reference Algul D, Duman G, Ozdemir S, Acar ET, Yener G. Preformulation, characterization, and in vitro release studies of caffeine-loaded solid lipid nanoparticles. J Cosmet Sci. 2018;69:165–73.PubMed Algul D, Duman G, Ozdemir S, Acar ET, Yener G. Preformulation, characterization, and in vitro release studies of caffeine-loaded solid lipid nanoparticles. J Cosmet Sci. 2018;69:165–73.PubMed
44.
go back to reference Massella D, Celasco E, Salaün F, Ferri A, Barresi AA. Overcoming the limits of flash nanoprecipitation: Effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers. 2018;10(10):1092.PubMedPubMedCentralCrossRef Massella D, Celasco E, Salaün F, Ferri A, Barresi AA. Overcoming the limits of flash nanoprecipitation: Effective loading of hydrophilic drug into polymeric nanoparticles with controlled structure. Polymers. 2018;10(10):1092.PubMedPubMedCentralCrossRef
45.
go back to reference Hassan A, Sahudin S, Hussain Z, Hussain M, Hussain M. Self-assembled chitosan nanoparticles for percutaneous delivery of caffeine: Preparation, characterization and in vitro release studies. Int J App Pharm. 2018;10(4):172–85.CrossRef Hassan A, Sahudin S, Hussain Z, Hussain M, Hussain M. Self-assembled chitosan nanoparticles for percutaneous delivery of caffeine: Preparation, characterization and in vitro release studies. Int J App Pharm. 2018;10(4):172–85.CrossRef
46.
go back to reference Suptijah P, Djajadisastra J, Saputro CKH, Hidayat T. The characterization and effectiveness Penetrasion of caffeine trapped and coated chitosan nanoparticles as anti-cellulite. J Nanosci Nanoeng. 2015;1:198–205. Suptijah P, Djajadisastra J, Saputro CKH, Hidayat T. The characterization and effectiveness Penetrasion of caffeine trapped and coated chitosan nanoparticles as anti-cellulite. J Nanosci Nanoeng. 2015;1:198–205.
47.
go back to reference Kanaani L, Far ME, Kazemi SM, Choupani E, Tabrizi MM, Shahmabadi HE, et al. General characteristics and cytotoxic effects of nano-poly (butyl cyanoacrylate) containing carboplatin on ovarian cancer cells. Asian Pac J Cancer Prev. 2017;18(1):87.PubMedPubMedCentral Kanaani L, Far ME, Kazemi SM, Choupani E, Tabrizi MM, Shahmabadi HE, et al. General characteristics and cytotoxic effects of nano-poly (butyl cyanoacrylate) containing carboplatin on ovarian cancer cells. Asian Pac J Cancer Prev. 2017;18(1):87.PubMedPubMedCentral
48.
go back to reference Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar R-T, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.CrossRef Patra JK, Das G, Fraceto LF, Campos EVR, del Pilar R-T, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.CrossRef
49.
go back to reference Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett. 2019;17(4):1667–92.CrossRef Morin-Crini N, Lichtfouse E, Torri G, Crini G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ Chem Lett. 2019;17(4):1667–92.CrossRef
50.
go back to reference Abd-Allah H, Abdel-Aziz RT, Nasr M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int J Biol Macromol. 2020;156:262–70.PubMedCrossRef Abd-Allah H, Abdel-Aziz RT, Nasr M. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int J Biol Macromol. 2020;156:262–70.PubMedCrossRef
51.
go back to reference Tomaz AF, de Carvalho SMS, Barbosa RC, Silva SM, Gutierrez MAS, de Lima AGB, et al. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials. 2018;11(10):2051.CrossRef Tomaz AF, de Carvalho SMS, Barbosa RC, Silva SM, Gutierrez MAS, de Lima AGB, et al. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials. 2018;11(10):2051.CrossRef
52.
go back to reference Abdellatif AA, Hennig R, Pollinger K, Tawfeek HM, Bouazzaoui A, Goepferich A. Fluorescent nanoparticles coated with a somatostatin analogue target blood monocyte for efficient leukaemia treatment. Pharm Res. 2020;37:1–10.CrossRef Abdellatif AA, Hennig R, Pollinger K, Tawfeek HM, Bouazzaoui A, Goepferich A. Fluorescent nanoparticles coated with a somatostatin analogue target blood monocyte for efficient leukaemia treatment. Pharm Res. 2020;37:1–10.CrossRef
53.
go back to reference Panos I, Acosta N, Heras A. New drug delivery systems based on chitosan. Curr Drug Discov Technol. 2008;5(4):333–41.PubMedCrossRef Panos I, Acosta N, Heras A. New drug delivery systems based on chitosan. Curr Drug Discov Technol. 2008;5(4):333–41.PubMedCrossRef
54.
go back to reference Duttagupta DS, Jadhav VM, Kadam VJ. Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv. 2015;12(4):369–81.PubMedCrossRef Duttagupta DS, Jadhav VM, Kadam VJ. Chitosan: a propitious biopolymer for drug delivery. Curr Drug Deliv. 2015;12(4):369–81.PubMedCrossRef
55.
go back to reference Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IMO, Queiroz NdCA, Zago PMW, et al. Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: Synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int J Nanomed. 2015;10:3897.CrossRef Servat-Medina L, González-Gómez A, Reyes-Ortega F, Sousa IMO, Queiroz NdCA, Zago PMW, et al. Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: Synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int J Nanomed. 2015;10:3897.CrossRef
56.
go back to reference Sobhani Z, Samani SM, Montaseri H, Khezri E. Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull. 2017;7(3):427.PubMedPubMedCentralCrossRef Sobhani Z, Samani SM, Montaseri H, Khezri E. Nanoparticles of chitosan loaded ciprofloxacin: fabrication and antimicrobial activity. Adv Pharm Bull. 2017;7(3):427.PubMedPubMedCentralCrossRef
57.
go back to reference Calderón L, Harris R, Cordoba-Diaz M, Elorza M, Elorza B, Lenoir J, et al. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci. 2013;48(1–2):216–22.PubMedCrossRef Calderón L, Harris R, Cordoba-Diaz M, Elorza M, Elorza B, Lenoir J, et al. Nano and microparticulate chitosan-based systems for antiviral topical delivery. Eur J Pharm Sci. 2013;48(1–2):216–22.PubMedCrossRef
58.
go back to reference Kamath PR, Sunil D. Nano-chitosan particles in anticancer drug delivery: an up-to-date review. Mini Rev Med Chemi. 2017;17(15):1457–87. Kamath PR, Sunil D. Nano-chitosan particles in anticancer drug delivery: an up-to-date review. Mini Rev Med Chemi. 2017;17(15):1457–87.
59.
go back to reference Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141:769–84.PubMedCrossRef Bazak R, Houri M, El Achy S, Kamel S, Refaat T. Cancer active targeting by nanoparticles: a comprehensive review of literature. J Cancer Res Clin Oncol. 2015;141:769–84.PubMedCrossRef
60.
go back to reference Abdellatif AA. A plausible way for excretion of metal nanoparticles via active targeting. Drug Dev Ind Pharm. 2020;46(5):744–50.PubMedCrossRef Abdellatif AA. A plausible way for excretion of metal nanoparticles via active targeting. Drug Dev Ind Pharm. 2020;46(5):744–50.PubMedCrossRef
61.
go back to reference Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.PubMedCrossRef Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25.PubMedCrossRef
62.
go back to reference Abdellatif AA, Khan RA, Alhowail AH, Alqasoumi A, Sajid SM, Mohammed AM, et al. Octreotide-conjugated silver nanoparticles for active targeting of somatostatin receptors and their application in a nebulized rat model. Nanotechnol Rev. 2021;11(1):266–83.CrossRef Abdellatif AA, Khan RA, Alhowail AH, Alqasoumi A, Sajid SM, Mohammed AM, et al. Octreotide-conjugated silver nanoparticles for active targeting of somatostatin receptors and their application in a nebulized rat model. Nanotechnol Rev. 2021;11(1):266–83.CrossRef
63.
go back to reference Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol. 2022;13(1):12.CrossRef Mirzaghavami PS, Khoei S, Khoee S, Shirvalilou S. Folic acid-conjugated magnetic triblock copolymer nanoparticles for dual targeted delivery of 5-fluorouracil to colon cancer cells. Cancer Nanotechnol. 2022;13(1):12.CrossRef
64.
go back to reference Salar RK, Kumar N. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resource-Efficient Technologies. 2016;2(4):199–214.CrossRef Salar RK, Kumar N. Synthesis and characterization of vincristine loaded folic acid–chitosan conjugated nanoparticles. Resource-Efficient Technologies. 2016;2(4):199–214.CrossRef
65.
go back to reference Yadav AK, Gupta U, Sharma R. Nano drug delivery strategies for the treatment of cancers: Academic Press; 2020. Yadav AK, Gupta U, Sharma R. Nano drug delivery strategies for the treatment of cancers: Academic Press; 2020.
66.
go back to reference Cheng L, Ma H, Shao M, Fan Q, Lv H, Peng J, et al. Synthesis of folate-chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep. 2017;16(2):1101–8.PubMedPubMedCentralCrossRef Cheng L, Ma H, Shao M, Fan Q, Lv H, Peng J, et al. Synthesis of folate-chitosan nanoparticles loaded with ligustrazine to target folate receptor positive cancer cells. Mol Med Rep. 2017;16(2):1101–8.PubMedPubMedCentralCrossRef
67.
go back to reference Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, et al. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res Int. 2013;2013:723158.PubMedPubMedCentralCrossRef Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, et al. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res Int. 2013;2013:723158.PubMedPubMedCentralCrossRef
68.
go back to reference Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci. 2015;16(1):1772–90 PubMed PMID: 25590303. Pubmed Central PMCID: 4307333.PubMedPubMedCentralCrossRef Wong PT, Choi SK. Mechanisms and implications of dual-acting methotrexate in folate-targeted nanotherapeutic delivery. Int J Mol Sci. 2015;16(1):1772–90 PubMed PMID: 25590303. Pubmed Central PMCID: 4307333.PubMedPubMedCentralCrossRef
69.
go back to reference Khan ZA, Tripathi R, Mishra B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151–69.PubMedCrossRef Khan ZA, Tripathi R, Mishra B. Methotrexate: a detailed review on drug delivery and clinical aspects. Expert Opin Drug Deliv. 2012;9(2):151–69.PubMedCrossRef
70.
go back to reference Kozminski P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21(10):3483 PubMed PMID: 32423175. Pubmed Central PMCID: 7279024.PubMedPubMedCentralCrossRef Kozminski P, Halik PK, Chesori R, Gniazdowska E. Overview of dual-acting drug methotrexate in different neurological diseases, autoimmune pathologies and cancers. Int J Mol Sci. 2020;21(10):3483 PubMed PMID: 32423175. Pubmed Central PMCID: 7279024.PubMedPubMedCentralCrossRef
71.
go back to reference Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.CrossRef Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso M. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci. 1997;63(1):125–32.CrossRef
72.
go back to reference Abosabaa SA, ElMeshad AN, Arafa MG. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: a comprehensive analysis using Box-Behnken design. Polymers. 2021;13(5):677.PubMedPubMedCentralCrossRef Abosabaa SA, ElMeshad AN, Arafa MG. Chitosan nanocarrier entrapping hydrophilic drugs as advanced polymeric system for dual pharmaceutical and cosmeceutical application: a comprehensive analysis using Box-Behnken design. Polymers. 2021;13(5):677.PubMedPubMedCentralCrossRef
73.
go back to reference Sun X, Yu D, Ying Z, Pan C, Wang N, Huang F, et al. Fabrication of ion-crosslinking aminochitosan nanoparticles for encapsulation and slow release of curcumin. Pharmaceutics. 2019;11(11):584.PubMedPubMedCentralCrossRef Sun X, Yu D, Ying Z, Pan C, Wang N, Huang F, et al. Fabrication of ion-crosslinking aminochitosan nanoparticles for encapsulation and slow release of curcumin. Pharmaceutics. 2019;11(11):584.PubMedPubMedCentralCrossRef
74.
go back to reference Liu B, Wang Y, Yu Q, Li D, Li F. Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect. CyTA J Food. 2018;16(1):868–76.CrossRef Liu B, Wang Y, Yu Q, Li D, Li F. Synthesis, characterization of catechin-loaded folate-conjugated chitosan nanoparticles and their anti-proliferative effect. CyTA J Food. 2018;16(1):868–76.CrossRef
75.
go back to reference Ghareeb DA, Saleh SR, Seadawy MG, Nofal MS, Abdulmalek SA, Hassan SF, et al. Nanoparticles of ZnO/Berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity. J Pharm Investig. 2021;51(6):735–57.PubMedCentralCrossRef Ghareeb DA, Saleh SR, Seadawy MG, Nofal MS, Abdulmalek SA, Hassan SF, et al. Nanoparticles of ZnO/Berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity. J Pharm Investig. 2021;51(6):735–57.PubMedCentralCrossRef
76.
go back to reference El-Zahaby SA, Aboughaly MH, Abdelbary GA, El-Gazayerly ON. Development of a novel solid self-nano-emulsifying osmotically controlled system of a centrally acting drug: preparation and in-vitro evaluation. Inventi Impact NDDS. 2016;2016:35–49. El-Zahaby SA, Aboughaly MH, Abdelbary GA, El-Gazayerly ON. Development of a novel solid self-nano-emulsifying osmotically controlled system of a centrally acting drug: preparation and in-vitro evaluation. Inventi Impact NDDS. 2016;2016:35–49.
77.
78.
go back to reference Hashad RA, Ishak RA, Geneidi AS, Mansour S. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization. Int J Biol Macromol. 2016;91:630–9.PubMedCrossRef Hashad RA, Ishak RA, Geneidi AS, Mansour S. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization. Int J Biol Macromol. 2016;91:630–9.PubMedCrossRef
79.
go back to reference Allam AN, Hamdallah SI, Abdallah OY. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomed. 2017;12:4733.CrossRef Allam AN, Hamdallah SI, Abdallah OY. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: preparation, characterization, and ex vivo/in vivo evaluation. Int J Nanomed. 2017;12:4733.CrossRef
80.
go back to reference Raghad S, Hatam B. Validation and Determination of Caffeine Contents in Energy Drinks Available on the Iraqi Market by Using High Performance Liquid Chromatography (HPLC). Univ Karbala Iraq 2016. 2016;6(1):181–94. Raghad S, Hatam B. Validation and Determination of Caffeine Contents in Energy Drinks Available on the Iraqi Market by Using High Performance Liquid Chromatography (HPLC). Univ Karbala Iraq 2016. 2016;6(1):181–94.
81.
go back to reference Lebon G, Edwards PC, Leslie AG, Tate CG. Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol. 2015;87(6):907–15.PubMedPubMedCentralCrossRef Lebon G, Edwards PC, Leslie AG, Tate CG. Molecular determinants of CGS21680 binding to the human adenosine A2A receptor. Mol Pharmacol. 2015;87(6):907–15.PubMedPubMedCentralCrossRef
82.
go back to reference Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.CrossRef Brand-Williams W, Cuvelier M-E, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol. 1995;28(1):25–30.CrossRef
83.
go back to reference Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8 PubMed PMID: 11846609.PubMedCrossRef Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8 PubMed PMID: 11846609.PubMedCrossRef
84.
go back to reference Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf, B. 2012;90:21–7.CrossRef Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf, B. 2012;90:21–7.CrossRef
85.
go back to reference Yan J, Guan Z-Y, Zhu W-F, Zhong L-Y, Qiu Z-Q, Yue P-F, et al. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics. Pharmaceutics. 2020;12(3):216.PubMedPubMedCentralCrossRef Yan J, Guan Z-Y, Zhu W-F, Zhong L-Y, Qiu Z-Q, Yue P-F, et al. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics. Pharmaceutics. 2020;12(3):216.PubMedPubMedCentralCrossRef
86.
go back to reference Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.PubMedCrossRef Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. 2010;148(2):135–46.PubMedCrossRef
87.
go back to reference Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics. 2021;13(3):326.PubMedPubMedCentralCrossRef Jurczyk M, Jelonek K, Musiał-Kulik M, Beberok A, Wrześniok D, Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics. 2021;13(3):326.PubMedPubMedCentralCrossRef
88.
go back to reference MohammadpourDounighi N, Eskandari R, Avadi MR, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venomous Anim Toxins Incl Trop Dis. 2012;18:44–52.CrossRef MohammadpourDounighi N, Eskandari R, Avadi MR, Zolfagharian H, Mir Mohammad Sadeghi A, Rezayat M. Preparation and in vitro characterization of chitosan nanoparticles containing Mesobuthus eupeus scorpion venom as an antigen delivery system. J Venomous Anim Toxins Incl Trop Dis. 2012;18:44–52.CrossRef
89.
go back to reference Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.PubMedPubMedCentralCrossRef Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.PubMedPubMedCentralCrossRef
90.
go back to reference Stolarczyk EU, Stolarczyk K, Łaszcz M, Kubiszewski M, Maruszak W, Olejarz W, et al. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci. 2017;96:176–85.PubMedCrossRef Stolarczyk EU, Stolarczyk K, Łaszcz M, Kubiszewski M, Maruszak W, Olejarz W, et al. Synthesis and characterization of genistein conjugated with gold nanoparticles and the study of their cytotoxic properties. Eur J Pharm Sci. 2017;96:176–85.PubMedCrossRef
91.
go back to reference Matos BN, Reis TA, Gratieri T, Gelfuso GM. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromol. 2015;75:225–9.PubMedCrossRef Matos BN, Reis TA, Gratieri T, Gelfuso GM. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromol. 2015;75:225–9.PubMedCrossRef
92.
go back to reference Sahu SK, Mallick SK, Santra S, Maiti TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci - Mater Med. 2010;21(5):1587–97.PubMedCrossRef Sahu SK, Mallick SK, Santra S, Maiti TK, Ghosh SK, Pramanik P. In vitro evaluation of folic acid modified carboxymethyl chitosan nanoparticles loaded with doxorubicin for targeted delivery. J Mater Sci - Mater Med. 2010;21(5):1587–97.PubMedCrossRef
93.
go back to reference İnce İ, Yıldırım Y, Güler G, Medine Eİ, Ballıca G, Kuşdemir BC, et al. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem. 2020;324(1):71–85.CrossRef İnce İ, Yıldırım Y, Güler G, Medine Eİ, Ballıca G, Kuşdemir BC, et al. Synthesis and characterization of folic acid-chitosan nanoparticles loaded with thymoquinone to target ovarian cancer cells. J Radioanal Nucl Chem. 2020;324(1):71–85.CrossRef
94.
go back to reference Luong D, Kesharwani P, Alsaab HO, Sau S, Padhye S, Sarkar FH, et al. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf, B. 2017;157:490–502.CrossRef Luong D, Kesharwani P, Alsaab HO, Sau S, Padhye S, Sarkar FH, et al. Folic acid conjugated polymeric micelles loaded with a curcumin difluorinated analog for targeting cervical and ovarian cancers. Colloids Surf, B. 2017;157:490–502.CrossRef
95.
go back to reference Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2015;13(1):141–58.CrossRef Fernandes Queiroz M, Melo KRT, Sabry DA, Sassaki GL, Rocha HAO. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs. 2015;13(1):141–58.CrossRef
96.
go back to reference Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res. 2004;339(16):2693–700.CrossRef Qi L, Xu Z, Jiang X, Hu C, Zou X. Preparation and antibacterial activity of chitosan nanoparticles. Carbohyd Res. 2004;339(16):2693–700.CrossRef
97.
go back to reference Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 2006;7(2):E138–43.PubMedCentralCrossRef Bhumkar DR, Pokharkar VB. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 2006;7(2):E138–43.PubMedCentralCrossRef
98.
go back to reference Lustriane C, Dwivany FM, Suendo V, Reza M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol. 2018;45(1):36–44.CrossRef Lustriane C, Dwivany FM, Suendo V, Reza M. Effect of chitosan and chitosan-nanoparticles on post harvest quality of banana fruits. J Plant Biotechnol. 2018;45(1):36–44.CrossRef
99.
go back to reference Varshosaz J, Hassanzadeh F, Sadeghi H, Shakery M. Folate targeted solid lipid nanoparticles of simvastatin for enhanced cytotoxic effects of doxorubicin in chronic myeloid leukemia. Curr Nanosci. 2012;8(2):249–58.CrossRef Varshosaz J, Hassanzadeh F, Sadeghi H, Shakery M. Folate targeted solid lipid nanoparticles of simvastatin for enhanced cytotoxic effects of doxorubicin in chronic myeloid leukemia. Curr Nanosci. 2012;8(2):249–58.CrossRef
100.
go back to reference de Moura MR, Aouada FA, Mattoso LH. Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci. 2008;321(2):477–83.PubMedCrossRef de Moura MR, Aouada FA, Mattoso LH. Preparation of chitosan nanoparticles using methacrylic acid. J Colloid Interface Sci. 2008;321(2):477–83.PubMedCrossRef
101.
go back to reference Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohyd Res. 2011;346(6):801–6.CrossRef Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohyd Res. 2011;346(6):801–6.CrossRef
102.
go back to reference Zheng Y, Cai Z, Song X, Chen Q, Bi Y, Li Y, et al. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J Drug Target. 2009;17(4):294–303.PubMedCrossRef Zheng Y, Cai Z, Song X, Chen Q, Bi Y, Li Y, et al. Preparation and characterization of folate conjugated N-trimethyl chitosan nanoparticles as protein carrier targeting folate receptor: in vitro studies. J Drug Target. 2009;17(4):294–303.PubMedCrossRef
103.
go back to reference Ji J, Wu D, Liu L, Chen J, Xu Y. Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull. 2012;68(6):1707–20.CrossRef Ji J, Wu D, Liu L, Chen J, Xu Y. Preparation, characterization, and in vitro release of folic acid-conjugated chitosan nanoparticles loaded with methotrexate for targeted delivery. Polym Bull. 2012;68(6):1707–20.CrossRef
104.
go back to reference Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250(1):215–26.PubMedCrossRef Xu Y, Du Y. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm. 2003;250(1):215–26.PubMedCrossRef
105.
go back to reference Zhang H, Liu G, Zeng X, Wu Y, Yang C, Mei L, et al. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int J Nanomed. 2015;10:2461. Zhang H, Liu G, Zeng X, Wu Y, Yang C, Mei L, et al. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells. Int J Nanomed. 2015;10:2461.
107.
go back to reference Satheeshababu B, Mohamed I. Synthesis and characterization of sodium alginate conjugate and study of effect of conjugation on drug release from matrix tablet. Indian J Pharm Sci. 2015;77(5):579.PubMedPubMedCentralCrossRef Satheeshababu B, Mohamed I. Synthesis and characterization of sodium alginate conjugate and study of effect of conjugation on drug release from matrix tablet. Indian J Pharm Sci. 2015;77(5):579.PubMedPubMedCentralCrossRef
108.
go back to reference Ji J, Wu D, Liu L, Chen J, Xu Y. Preparation, evaluation, and in vitro release of folic acid conjugated O-carboxymethyl chitosan nanoparticles loaded with methotrexate. J Appl Polym Sci. 2012;125(S2):E208–15.CrossRef Ji J, Wu D, Liu L, Chen J, Xu Y. Preparation, evaluation, and in vitro release of folic acid conjugated O-carboxymethyl chitosan nanoparticles loaded with methotrexate. J Appl Polym Sci. 2012;125(S2):E208–15.CrossRef
109.
go back to reference John AA, Jaganathan SK, Ayyar M, Krishnasamy NP, Rajasekar R, Supriyanto E. Folic acid decorated chitosan nanoparticles and its derivatives for the delivery of drugs and genes to cancer cells. Curr Sci. 2017;25:1530–42.CrossRef John AA, Jaganathan SK, Ayyar M, Krishnasamy NP, Rajasekar R, Supriyanto E. Folic acid decorated chitosan nanoparticles and its derivatives for the delivery of drugs and genes to cancer cells. Curr Sci. 2017;25:1530–42.CrossRef
110.
go back to reference Alarcon GS. Does caffeine intake affect methotrexate efficacy? Nat Clin Pract Rheumatol. 2006;2(11):592–3.CrossRef Alarcon GS. Does caffeine intake affect methotrexate efficacy? Nat Clin Pract Rheumatol. 2006;2(11):592–3.CrossRef
111.
go back to reference Melani A, Corti F, Cellai L, Vannucchi MG, Pedata F. Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res. 2014;1551:59–72.PubMedCrossRef Melani A, Corti F, Cellai L, Vannucchi MG, Pedata F. Low doses of the selective adenosine A2A receptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res. 2014;1551:59–72.PubMedCrossRef
112.
go back to reference Qin L, Wang W, You S, Dong J, Zhou Y, Wang J. In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid. Int J Nanomed. 2014;9:5701.CrossRef Qin L, Wang W, You S, Dong J, Zhou Y, Wang J. In vitro antioxidant activity and in vivo antifatigue effect of layered double hydroxide nanoparticles as delivery vehicles for folic acid. Int J Nanomed. 2014;9:5701.CrossRef
113.
go back to reference Nasiri R, Almaki JH, Idris A, Nasiri M, Irfan M, Majid FAA, et al. Targeted delivery of bromelain using dual mode nanoparticles: Synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC Adv. 2017;7(64):40074–94.CrossRef Nasiri R, Almaki JH, Idris A, Nasiri M, Irfan M, Majid FAA, et al. Targeted delivery of bromelain using dual mode nanoparticles: Synthesis, physicochemical characterization, in vitro and in vivo evaluation. RSC Adv. 2017;7(64):40074–94.CrossRef
114.
go back to reference Meel Rvd, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Intracellular delivery III. 2016. p. 163–200. Meel Rvd, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Intracellular delivery III. 2016. p. 163–200.
115.
go back to reference Machado KL, Marinello PC, Silva TNX, Silva CFN, Luiz RC, Cecchini R, et al. Oxidative stress in caffeine action on the proliferation and death of human breast cancer cells MCF-7 and MDA-MB-231. Nutr Cancer. 2021;73(8):1378–88.PubMedCrossRef Machado KL, Marinello PC, Silva TNX, Silva CFN, Luiz RC, Cecchini R, et al. Oxidative stress in caffeine action on the proliferation and death of human breast cancer cells MCF-7 and MDA-MB-231. Nutr Cancer. 2021;73(8):1378–88.PubMedCrossRef
116.
go back to reference Lukashev D, Ohta A, Apasov S, Chen J-F, Sitkovsky M. Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol. 2004;173(1):21–4.PubMedCrossRef Lukashev D, Ohta A, Apasov S, Chen J-F, Sitkovsky M. Cutting edge: physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. J Immunol. 2004;173(1):21–4.PubMedCrossRef
117.
go back to reference Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, et al. Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway. Am J Transl Res. 2016;8(5):2284.PubMedPubMedCentral Bao R, Hou J, Li Y, Bian J, Deng X, Zhu X, et al. Adenosine promotes Foxp3 expression in Treg cells in sepsis model by activating JNK/AP-1 pathway. Am J Transl Res. 2016;8(5):2284.PubMedPubMedCentral
118.
go back to reference Figueiró F, de Oliveira CP, Bergamin LS, Rockenbach L, Mendes FB, Jandrey EHF, et al. Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signal. 2016;12:303–12.PubMedPubMedCentralCrossRef Figueiró F, de Oliveira CP, Bergamin LS, Rockenbach L, Mendes FB, Jandrey EHF, et al. Methotrexate up-regulates ecto-5′-nucleotidase/CD73 and reduces the frequency of T lymphocytes in the glioblastoma microenvironment. Purinergic Signal. 2016;12:303–12.PubMedPubMedCentralCrossRef
119.
go back to reference Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci. 2006;103(35):13132–7.PubMedPubMedCentralCrossRef Ohta A, Gorelik E, Prasad SJ, Ronchese F, Lukashev D, Wong MK, et al. A2A adenosine receptor protects tumors from antitumor T cells. Proc Natl Acad Sci. 2006;103(35):13132–7.PubMedPubMedCentralCrossRef
120.
go back to reference Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs. 2014;28(5):455–74.PubMedCrossRef Pinna A. Adenosine A2A receptor antagonists in Parkinson’s disease: progress in clinical trials from the newly approved istradefylline to drugs in early development and those already discontinued. CNS Drugs. 2014;28(5):455–74.PubMedCrossRef
121.
go back to reference Vigano S, Alatzoglou D, Irving M, Menetrier-Caux C, Caux C, Romero P, et al. Targeting adenosine in cancer immunotherapy to enhance t-cell function. Front Immunol. 2019;10:925 PubMed PMID: 31244820. Pubmed Central PMCID: 6562565.PubMedPubMedCentralCrossRef Vigano S, Alatzoglou D, Irving M, Menetrier-Caux C, Caux C, Romero P, et al. Targeting adenosine in cancer immunotherapy to enhance t-cell function. Front Immunol. 2019;10:925 PubMed PMID: 31244820. Pubmed Central PMCID: 6562565.PubMedPubMedCentralCrossRef
Metadata
Title
Caffeine-folic acid-loaded-chitosan nanoparticles combined with methotrexate as a novel HepG2 immunotherapy targeting adenosine A2A receptor downstream cascade
Authors
Alaa Hamed
Doaa Ghareeb
Tarek M. Mohamed
Mahmoud Hamed
Mohammed S. Nofal
M. Gaber
Publication date
01-12-2023
Publisher
BioMed Central
Published in
BMC Complementary Medicine and Therapies / Issue 1/2023
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-023-04212-4

Other articles of this Issue 1/2023

BMC Complementary Medicine and Therapies 1/2023 Go to the issue