Skip to main content
Top
Published in: BMC Medical Genetics 1/2011

Open Access 01-12-2011 | Research article

Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study

Authors: Susan M Wernimont, Andrew G Clark, Patrick J Stover, Martin T Wells, Augusto A Litonjua, Scott T Weiss, J Michael Gaziano, Katherine L Tucker, Andrea Baccarelli, Joel Schwartz, Valentina Bollati, Patricia A Cassano

Published in: BMC Medical Genetics | Issue 1/2011

Login to get access

Abstract

Background

Sequence variants in genes functioning in folate-mediated one-carbon metabolism are hypothesized to lead to changes in levels of homocysteine and DNA methylation, which, in turn, are associated with risk of cardiovascular disease.

Methods

330 SNPs in 52 genes were studied in relation to plasma homocysteine and global genomic DNA methylation. SNPs were selected based on functional effects and gene coverage, and assays were completed on the Illumina Goldengate platform. Age-, smoking-, and nutrient-adjusted genotype--phenotype associations were estimated in regression models.

Results

Using a nominal P ≤ 0.005 threshold for statistical significance, 20 SNPs were associated with plasma homocysteine, 8 with Alu methylation, and 1 with LINE-1 methylation. Using a more stringent false discovery rate threshold, SNPs in FTCD, SLC19A1, and SLC19A3 genes remained associated with plasma homocysteine. Gene by vitamin B-6 interactions were identified for both Alu and LINE-1 methylation, and epistatic interactions with the MTHFR rs1801133 SNP were identified for the plasma homocysteine phenotype. Pleiotropy involving the MTHFD1L and SARDH genes for both plasma homocysteine and Alu methylation phenotypes was identified.

Conclusions

No single gene was associated with all three phenotypes, and the set of the most statistically significant SNPs predictive of homocysteine or Alu or LINE-1 methylation was unique to each phenotype. Genetic variation in folate-mediated one-carbon metabolism, other than the well-known effects of the MTHFR c.665C>T (known as c.677 C>T, rs1801133, p.Ala222Val), is predictive of cardiovascular disease biomarkers.
Appendix
Available only for authorised users
Literature
2.
go back to reference Selhub J: The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. The Journal of nutrition. 2006, 136: 1726S-1730S.PubMed Selhub J: The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. The Journal of nutrition. 2006, 136: 1726S-1730S.PubMed
3.
go back to reference The Homocysteine Studies Collaboration: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002, 288: 2015-2022. 10.1001/jama.288.16.2015.CrossRef The Homocysteine Studies Collaboration: Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA. 2002, 288: 2015-2022. 10.1001/jama.288.16.2015.CrossRef
4.
go back to reference Lewis SJ, Ebrahim S, Davey Smith G: Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate?. Br Med J. 2005, 331: 1053-10.1136/bmj.38611.658947.55.CrossRef Lewis SJ, Ebrahim S, Davey Smith G: Meta-analysis of MTHFR 677C->T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate?. Br Med J. 2005, 331: 1053-10.1136/bmj.38611.658947.55.CrossRef
5.
go back to reference Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. Br Med J. 2002, 325: 1202-10.1136/bmj.325.7374.1202.CrossRef Wald DS, Law M, Morris JK: Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. Br Med J. 2002, 325: 1202-10.1136/bmj.325.7374.1202.CrossRef
6.
go back to reference Homocysteine Lowering Trialists' Collaboration: Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr. 2005, 82: 806-812. Homocysteine Lowering Trialists' Collaboration: Dose-dependent effects of folic acid on blood concentrations of homocysteine: a meta-analysis of the randomized trials. Am J Clin Nutr. 2005, 82: 806-812.
7.
go back to reference Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG: MTHFR 677C-->T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002, 288: 2023-2031. 10.1001/jama.288.16.2023.CrossRefPubMed Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG: MTHFR 677C-->T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA. 2002, 288: 2023-2031. 10.1001/jama.288.16.2023.CrossRefPubMed
8.
go back to reference Jamaluddin MS, Yang X, Wang H: Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med. 2007, 45: 1660-1666. 10.1515/CCLM.2007.350.CrossRefPubMed Jamaluddin MS, Yang X, Wang H: Hyperhomocysteinemia, DNA methylation and vascular disease. Clin Chem Lab Med. 2007, 45: 1660-1666. 10.1515/CCLM.2007.350.CrossRefPubMed
9.
go back to reference Ulrey CL, Liu L, Andrews LG, Tollefsbol TO: The impact of metabolism on DNA methylation. Hum Mol Genet. 2005, 14 (Spec No 1): R139-R147.CrossRefPubMed Ulrey CL, Liu L, Andrews LG, Tollefsbol TO: The impact of metabolism on DNA methylation. Hum Mol Genet. 2005, 14 (Spec No 1): R139-R147.CrossRefPubMed
10.
go back to reference Pogribny IP, Beland FA: DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009, 66: 2249-2261. 10.1007/s00018-009-0015-5.CrossRefPubMed Pogribny IP, Beland FA: DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci. 2009, 66: 2249-2261. 10.1007/s00018-009-0015-5.CrossRefPubMed
12.
go back to reference Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP: A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic acids research. 2004, 32: e38-10.1093/nar/gnh032.CrossRefPubMedPubMedCentral Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP: A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic acids research. 2004, 32: e38-10.1093/nar/gnh032.CrossRefPubMedPubMedCentral
13.
go back to reference Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, et al: Ischemic Heart Disease and Stroke in Relation to Blood DNA Methylation. Epidemiology (Cambridge, Mass). 2010 Baccarelli A, Wright R, Bollati V, Litonjua A, Zanobetti A, Tarantini L, et al: Ischemic Heart Disease and Stroke in Relation to Blood DNA Methylation. Epidemiology (Cambridge, Mass). 2010
14.
go back to reference Bell B, Rose CL, Damon A: The Veterans Administration longitudinal study of healthy aging. The Gerontologist. 1966, 6: 179-184. 10.1093/geront/6.4.179.CrossRefPubMed Bell B, Rose CL, Damon A: The Veterans Administration longitudinal study of healthy aging. The Gerontologist. 1966, 6: 179-184. 10.1093/geront/6.4.179.CrossRefPubMed
15.
go back to reference Damon A, Seltzer CC, Stoudt HW, Bell B: Age and physique in health white veterans at Boston. Journal of gerontology. 1972, 27: 202-208.CrossRefPubMed Damon A, Seltzer CC, Stoudt HW, Bell B: Age and physique in health white veterans at Boston. Journal of gerontology. 1972, 27: 202-208.CrossRefPubMed
16.
go back to reference Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A: High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 2005, 82: 627-635.PubMed Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A: High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 2005, 82: 627-635.PubMed
17.
go back to reference Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, et al: Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009, 179: 572-578. 10.1164/rccm.200807-1097OC.CrossRefPubMedPubMedCentral Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua AA, Suh HH, et al: Rapid DNA methylation changes after exposure to traffic particles. Am J Respir Crit Care Med. 2009, 179: 572-578. 10.1164/rccm.200807-1097OC.CrossRefPubMedPubMedCentral
18.
go back to reference Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al: Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009, 130: 234-239. 10.1016/j.mad.2008.12.003.CrossRefPubMed Bollati V, Schwartz J, Wright R, Litonjua A, Tarantini L, Suh H, et al: Decline in genomic DNA methylation through aging in a cohort of elderly subjects. Mech Ageing Dev. 2009, 130: 234-239. 10.1016/j.mad.2008.12.003.CrossRefPubMed
19.
go back to reference Wilker EH, Alexeeff SE, Poon A, Litonjua AA, Sparrow D, Vokonas PS, et al: Candidate genes for respiratory disease associated with markers of inflammation and endothelial dysfunction in elderly men. Atherosclerosis. 2009, 206: 480-485. 10.1016/j.atherosclerosis.2009.03.004.CrossRefPubMedPubMedCentral Wilker EH, Alexeeff SE, Poon A, Litonjua AA, Sparrow D, Vokonas PS, et al: Candidate genes for respiratory disease associated with markers of inflammation and endothelial dysfunction in elderly men. Atherosclerosis. 2009, 206: 480-485. 10.1016/j.atherosclerosis.2009.03.004.CrossRefPubMedPubMedCentral
20.
go back to reference Benjamini Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 1995, 57: 289-300. Benjamini Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological). 1995, 57: 289-300.
21.
go back to reference Ganapathy V, Smith SB, Prasad PD: SLC19: the folate/thiamine transporter family. Pflugers Arch. 2004, 447: 641-646. 10.1007/s00424-003-1068-1.CrossRefPubMed Ganapathy V, Smith SB, Prasad PD: SLC19: the folate/thiamine transporter family. Pflugers Arch. 2004, 447: 641-646. 10.1007/s00424-003-1068-1.CrossRefPubMed
22.
go back to reference Stanislawska-Sachadyn A, Mitchell LE, Woodside JV, Buckley PT, Kealey C, Young IS, et al: The reduced folate carrier (SLC19A1) c.80G>A polymorphism is associated with red cell folate concentrations among women. Ann Hum Genet. 2009, 73: 484-491. 10.1111/j.1469-1809.2009.00529.x.CrossRefPubMedPubMedCentral Stanislawska-Sachadyn A, Mitchell LE, Woodside JV, Buckley PT, Kealey C, Young IS, et al: The reduced folate carrier (SLC19A1) c.80G>A polymorphism is associated with red cell folate concentrations among women. Ann Hum Genet. 2009, 73: 484-491. 10.1111/j.1469-1809.2009.00529.x.CrossRefPubMedPubMedCentral
23.
go back to reference Fredriksen A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J: Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat. 2007, 28: 856-865. 10.1002/humu.20522.CrossRefPubMed Fredriksen A, Meyer K, Ueland PM, Vollset SE, Grotmol T, Schneede J: Large-scale population-based metabolic phenotyping of thirteen genetic polymorphisms related to one-carbon metabolism. Hum Mutat. 2007, 28: 856-865. 10.1002/humu.20522.CrossRefPubMed
24.
go back to reference Semmler A, Linnebank M, Krex D, Gotz A, Moskau S, Ziegler A, et al: Polymorphisms of homocysteine metabolism are associated with intracranial aneurysms. Cerebrovasc Dis. 2008, 26: 425-429. 10.1159/000155638.CrossRefPubMed Semmler A, Linnebank M, Krex D, Gotz A, Moskau S, Ziegler A, et al: Polymorphisms of homocysteine metabolism are associated with intracranial aneurysms. Cerebrovasc Dis. 2008, 26: 425-429. 10.1159/000155638.CrossRefPubMed
25.
go back to reference Giusti B, Saracini C, Bolli P, Magi A, Sestini I, Sticchi E, et al: Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet. 2008, 45: 721-730. 10.1136/jmg.2008.057851.CrossRefPubMed Giusti B, Saracini C, Bolli P, Magi A, Sestini I, Sticchi E, et al: Genetic analysis of 56 polymorphisms in 17 genes involved in methionine metabolism in patients with abdominal aortic aneurysm. J Med Genet. 2008, 45: 721-730. 10.1136/jmg.2008.057851.CrossRefPubMed
26.
go back to reference Chatzikyriakidou A, Vakalis KV, Kolaitis N, Kolios G, Naka KK, Michalis LK, et al: Distinct association of SLC19A1 polymorphism -43T>C with red cell folate levels and of MTHFR polymorphism 677C>T with plasma folate levels. Clin Biochem. 2008, 41: 174-176. 10.1016/j.clinbiochem.2007.11.006.CrossRefPubMed Chatzikyriakidou A, Vakalis KV, Kolaitis N, Kolios G, Naka KK, Michalis LK, et al: Distinct association of SLC19A1 polymorphism -43T>C with red cell folate levels and of MTHFR polymorphism 677C>T with plasma folate levels. Clin Biochem. 2008, 41: 174-176. 10.1016/j.clinbiochem.2007.11.006.CrossRefPubMed
27.
go back to reference Chatzikyriakidou A, Georgiou I, Voulgari PV, Papadopoulos CG, Tzavaras T, Drosos AA: Transcription regulatory polymorphism -43T>C in the 5'-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol Int. 2007, 27: 1057-1061. 10.1007/s00296-007-0339-0.CrossRefPubMed Chatzikyriakidou A, Georgiou I, Voulgari PV, Papadopoulos CG, Tzavaras T, Drosos AA: Transcription regulatory polymorphism -43T>C in the 5'-flanking region of SLC19A1 gene could affect rheumatoid arthritis patient response to methotrexate therapy. Rheumatol Int. 2007, 27: 1057-1061. 10.1007/s00296-007-0339-0.CrossRefPubMed
28.
go back to reference Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, et al: The molecular basis of glutamate formiminotransferase deficiency. Human mutation. 2003, 22: 67-73. 10.1002/humu.10236.CrossRefPubMed Hilton JF, Christensen KE, Watkins D, Raby BA, Renaud Y, de la Luna S, et al: The molecular basis of glutamate formiminotransferase deficiency. Human mutation. 2003, 22: 67-73. 10.1002/humu.10236.CrossRefPubMed
29.
go back to reference Siva A, De Lange M, Clayton D, Monteith S, Spector T, Brown MJ: The heritability of plasma homocysteine, and the influence of genetic variation in the homocysteine methylation pathway. QJM. 2007, 100: 495-499. 10.1093/qjmed/hcm054.CrossRefPubMed Siva A, De Lange M, Clayton D, Monteith S, Spector T, Brown MJ: The heritability of plasma homocysteine, and the influence of genetic variation in the homocysteine methylation pathway. QJM. 2007, 100: 495-499. 10.1093/qjmed/hcm054.CrossRefPubMed
30.
go back to reference Nilsson SE, Read S, Berg S, Johansson B: Heritabilities for fifteen routine biochemical values: findings in 215 Swedish twin pairs 82 years of age or older. Scand J Clin Lab Invest. 2009, 69: 562-569. 10.1080/00365510902814646.CrossRefPubMed Nilsson SE, Read S, Berg S, Johansson B: Heritabilities for fifteen routine biochemical values: findings in 215 Swedish twin pairs 82 years of age or older. Scand J Clin Lab Invest. 2009, 69: 562-569. 10.1080/00365510902814646.CrossRefPubMed
31.
go back to reference Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, et al: Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutr. 2007, 86: 718-727.PubMed Pfeiffer CM, Johnson CL, Jain RB, Yetley EA, Picciano MF, Rader JI, et al: Trends in blood folate and vitamin B-12 concentrations in the United States, 1988 2004. Am J Clin Nutr. 2007, 86: 718-727.PubMed
32.
go back to reference Perry C, Yu S, Chen J, Matharu KS, Stover PJ: Effect of vitamin B6 availability on serine hydroxymethyltransferase in MCF-7 cells. Arch Biochem Biophys. 2007, 462: 21-27. 10.1016/j.abb.2007.04.005.CrossRefPubMedPubMedCentral Perry C, Yu S, Chen J, Matharu KS, Stover PJ: Effect of vitamin B6 availability on serine hydroxymethyltransferase in MCF-7 cells. Arch Biochem Biophys. 2007, 462: 21-27. 10.1016/j.abb.2007.04.005.CrossRefPubMedPubMedCentral
33.
go back to reference Taoka S, West M, Banerjee R: Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry. 1999, 38: 7406-10.1021/bi995077i.CrossRefPubMed Taoka S, West M, Banerjee R: Characterization of the heme and pyridoxal phosphate cofactors of human cystathionine beta-synthase reveals nonequivalent active sites. Biochemistry. 1999, 38: 7406-10.1021/bi995077i.CrossRefPubMed
34.
go back to reference Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al: Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006, 15: 2408-2417. 10.1158/1055-9965.EPI-06-0624.CrossRefPubMed Koushik A, Kraft P, Fuchs CS, Hankinson SE, Willett WC, Giovannucci EL, et al: Nonsynonymous polymorphisms in genes in the one-carbon metabolism pathway and associations with colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2006, 15: 2408-2417. 10.1158/1055-9965.EPI-06-0624.CrossRefPubMed
35.
go back to reference Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF: Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2]glycine and [(2)H3]leucine. The Journal of nutrition. 2007, 137: 2647-2652.PubMed Lamers Y, Williamson J, Gilbert LR, Stacpoole PW, Gregory JF: Glycine turnover and decarboxylation rate quantified in healthy men and women using primed, constant infusions of [1,2-(13)C2]glycine and [(2)H3]leucine. The Journal of nutrition. 2007, 137: 2647-2652.PubMed
36.
go back to reference Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G, Jones PA: Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. Mol Cancer Res. 2004, 2: 62-72.PubMed Weisenberger DJ, Velicescu M, Cheng JC, Gonzales FA, Liang G, Jones PA: Role of the DNA methyltransferase variant DNMT3b3 in DNA methylation. Mol Cancer Res. 2004, 2: 62-72.PubMed
37.
go back to reference Turek-Plewa J, Jagodzinski PP: The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005, 10: 631-647.PubMed Turek-Plewa J, Jagodzinski PP: The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol Biol Lett. 2005, 10: 631-647.PubMed
38.
go back to reference Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al: The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic acids research. 1999, 27: 2291-2298. 10.1093/nar/27.11.2291.CrossRefPubMedPubMedCentral Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA, et al: The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic acids research. 1999, 27: 2291-2298. 10.1093/nar/27.11.2291.CrossRefPubMedPubMedCentral
39.
go back to reference Choi SH, Heo K, Byun HM, An W, Lu W, Yang AS: Identification of preferential target sites for human DNA methyltransferases. Nucleic acids research. 2010 Choi SH, Heo K, Byun HM, An W, Lu W, Yang AS: Identification of preferential target sites for human DNA methyltransferases. Nucleic acids research. 2010
40.
go back to reference Fuso A, Nicolia V, Cavallaro RA, Scarpa S: DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. J Nutr Biochem. 2010 Fuso A, Nicolia V, Cavallaro RA, Scarpa S: DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. J Nutr Biochem. 2010
41.
go back to reference Christensen KE, MacKenzie RE: Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. Vitam Horm. 2008, 79: 393-410.CrossRefPubMed Christensen KE, MacKenzie RE: Mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases. Vitam Horm. 2008, 79: 393-410.CrossRefPubMed
42.
go back to reference Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447: 661-678. 10.1038/nature05911.CrossRef Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 2007, 447: 661-678. 10.1038/nature05911.CrossRef
43.
go back to reference Kerins DM, Koury MJ, Capdevila A, Rana S, Wagner C: Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutr. 2001, 74: 723-729.PubMed Kerins DM, Koury MJ, Capdevila A, Rana S, Wagner C: Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am J Clin Nutr. 2001, 74: 723-729.PubMed
44.
go back to reference Wagner C, Koury MJ: S-Adenosylhomocysteine: a better indicator of vascular disease than homocysteine?. Am J Clin Nutr. 2007, 86: 1581-1585.PubMed Wagner C, Koury MJ: S-Adenosylhomocysteine: a better indicator of vascular disease than homocysteine?. Am J Clin Nutr. 2007, 86: 1581-1585.PubMed
Metadata
Title
Folate network genetic variation, plasma homocysteine, and global genomic methylation content: a genetic association study
Authors
Susan M Wernimont
Andrew G Clark
Patrick J Stover
Martin T Wells
Augusto A Litonjua
Scott T Weiss
J Michael Gaziano
Katherine L Tucker
Andrea Baccarelli
Joel Schwartz
Valentina Bollati
Patricia A Cassano
Publication date
01-12-2011
Publisher
BioMed Central
Published in
BMC Medical Genetics / Issue 1/2011
Electronic ISSN: 1471-2350
DOI
https://doi.org/10.1186/1471-2350-12-150

Other articles of this Issue 1/2011

BMC Medical Genetics 1/2011 Go to the issue