Skip to main content
Top
Published in: Tumor Biology 8/2015

01-08-2015 | Review

Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy

Authors: Behdokht Bahrami, Mousa Mohammadnia-Afrouzi, Peyman Bakhshaei, Yaghoub Yazdani, Ghasem Ghalamfarsa, Mehdi Yousefi, Sanam Sadreddini, Farhad Jadidi-Niaragh, Mohammad Hojjat-Farsangi

Published in: Tumor Biology | Issue 8/2015

Login to get access

Abstract

The selective and efficient drug delivery to tumor cells can remarkably improve different cancer therapeutic approaches. There are several nanoparticles (NPs) which can act as a potent drug carrier for cancer therapy. However, the specific drug delivery to cancer cells is an important issue which should be considered before designing new NPs for in vivo application. It has been shown that cancer cells over-express folate receptor (FR) in order to improve their growth. As normal cells express a significantly lower levels of FR compared to tumor cells, it seems that folate molecules can be used as potent targeting moieties in different nanocarrier-based therapeutic approaches. Moreover, there is evidence which implies folate-conjugated NPs can selectively deliver anti-tumor drugs into cancer cells both in vitro and in vivo. In this review, we will discuss about the efficiency of different folate-conjugated NPs in cancer therapy.
Literature
1.
go back to reference Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: an updated review. Artificial Cells, Nanomed Biotechnol. 2015(0):1-11. Kazemi T, Younesi V, Jadidi-Niaragh F, Yousefi M. Immunotherapeutic approaches for cancer therapy: an updated review. Artificial Cells, Nanomed Biotechnol. 2015(0):1-11.
2.
go back to reference Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif cells, Nanomed Biotechnol. 2015(0):1-11. Hosseini M, Haji-Fatahaliha M, Jadidi-Niaragh F, Majidi J, Yousefi M. The use of nanoparticles as a promising therapeutic approach in cancer immunotherapy. Artif cells, Nanomed Biotechnol. 2015(0):1-11.
3.
go back to reference Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129–41.PubMedPubMedCentral Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges. Int J Nanomedicine. 2007;2(2):129–41.PubMedPubMedCentral
4.
go back to reference Talekar M, Kendall J, Denny W, Garg S. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anti-Cancer Drugs. 2011;22(10):949–62.PubMed Talekar M, Kendall J, Denny W, Garg S. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anti-Cancer Drugs. 2011;22(10):949–62.PubMed
5.
go back to reference Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers Chem. 2014;2(105). Conniot J, Silva JM, Fernandes JG, Silva LC, Gaspar R, Brocchini S et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Frontiers Chem. 2014;2(105).
6.
go back to reference Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.PubMed Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem. 2005;338(2):284–93.PubMed
7.
go back to reference Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers. 2010;2(4):1911–28.PubMedPubMedCentral Mansoori GA, Brandenburg KS, Shakeri-Zadeh A. A comparative study of two folate-conjugated gold nanoparticles for cancer nanotechnology applications. Cancers. 2010;2(4):1911–28.PubMedPubMedCentral
8.
go back to reference Ye W, Du J, Na R, Song Y, Mei Q, Zhao M. Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One. 2014;9(5):e97358.PubMedPubMedCentral Ye W, Du J, Na R, Song Y, Mei Q, Zhao M. Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One. 2014;9(5):e97358.PubMedPubMedCentral
9.
go back to reference Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Del. 2013;2013(340315). Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Del. 2013;2013(340315).
10.
go back to reference Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mat Chem B. 2013;1(17):2324–32. Wang J, Yao K, Wang C, Tang C, Jiang X. Synthesis and drug delivery of novel amphiphilic block copolymers containing hydrophobic dehydroabietic moiety. J Mat Chem B. 2013;1(17):2324–32.
11.
go back to reference Khoee S, Kavand A. Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: smart armored nanocarriers. Eur J Med Chem. 2014;73:18–29.PubMed Khoee S, Kavand A. Preparation, co-assembling and interfacial crosslinking of photocurable and folate-conjugated amphiphilic block copolymers for controlled and targeted drug delivery: smart armored nanocarriers. Eur J Med Chem. 2014;73:18–29.PubMed
12.
go back to reference Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227–34. Miyata K, Christie RJ, Kataoka K. Polymeric micelles for nano-scale drug delivery. React Funct Polym. 2011;71(3):227–34.
13.
go back to reference Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Del. 2006;3(1):139–62. Aliabadi HM, Lavasanifar A. Polymeric micelles for drug delivery. Expert Opin Drug Del. 2006;3(1):139–62.
14.
go back to reference Gao Z-G, Tian L, Hu J, Park I-S, Bae YH. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release. 2011;152(1):84–9.PubMedPubMedCentral Gao Z-G, Tian L, Hu J, Park I-S, Bae YH. Prevention of metastasis in a 4T1 murine breast cancer model by doxorubicin carried by folate conjugated pH sensitive polymeric micelles. J Control Release. 2011;152(1):84–9.PubMedPubMedCentral
15.
go back to reference Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8):962–90. Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery. Prog Polym Sci. 2007;32(8):962–90.
16.
go back to reference Zhu J, Zhou Z, Yang C, Kong D, Wan Y, Wang Z. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers. J Biomed Mat Res Part A. 2011;97(4):498–508. Zhu J, Zhou Z, Yang C, Kong D, Wan Y, Wang Z. Folate-conjugated amphiphilic star-shaped block copolymers as targeted nanocarriers. J Biomed Mat Res Part A. 2011;97(4):498–508.
17.
go back to reference Hami Z, Amini M, Ghazi-Khansari M, Rezayat SM, Gilani K. Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: synthesis and in vitro evaluation. DARU J Pharmaceut Sci. 2014;22(1):22–30. Hami Z, Amini M, Ghazi-Khansari M, Rezayat SM, Gilani K. Doxorubicin-conjugated PLA-PEG-Folate based polymeric micelle for tumor-targeted delivery: synthesis and in vitro evaluation. DARU J Pharmaceut Sci. 2014;22(1):22–30.
18.
go back to reference Scarano W, Duong HT, Lu H, De Souza PL, Stenzel MH. Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules. 2013;14(4):962–75.PubMed Scarano W, Duong HT, Lu H, De Souza PL, Stenzel MH. Folate conjugation to polymeric micelles via boronic acid ester to deliver platinum drugs to ovarian cancer cell lines. Biomacromolecules. 2013;14(4):962–75.PubMed
19.
go back to reference Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013;34(18):4544–54.PubMed Guo X, Shi C, Wang J, Di S, Zhou S. pH-triggered intracellular release from actively targeting polymer micelles. Biomaterials. 2013;34(18):4544–54.PubMed
20.
go back to reference Wu W-C, Huang C-M, Liao P-W. Dual-sensitive and folate-conjugated mixed polymeric micelles for controlled and targeted drug delivery. React Funct Polym. 2014;81:82–90. Wu W-C, Huang C-M, Liao P-W. Dual-sensitive and folate-conjugated mixed polymeric micelles for controlled and targeted drug delivery. React Funct Polym. 2014;81:82–90.
21.
go back to reference Bae Y, Jang W-D, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst. 2005;1(3):242–50.PubMed Bae Y, Jang W-D, Nishiyama N, Fukushima S, Kataoka K. Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol BioSyst. 2005;1(3):242–50.PubMed
22.
go back to reference Liu S-Q, Wiradharma N, Gao S-J, Tong YW, Yang Y-Y. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials. 2007;28(7):1423–33.PubMed Liu S-Q, Wiradharma N, Gao S-J, Tong YW, Yang Y-Y. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials. 2007;28(7):1423–33.PubMed
23.
go back to reference Song N, Ding M, Pan Z, Li J, Zhou L, Tan H, et al. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery. Biomacromolecules. 2013;14(12):4407–19.PubMed Song N, Ding M, Pan Z, Li J, Zhou L, Tan H, et al. Construction of targeting-clickable and tumor-cleavable polyurethane nanomicelles for multifunctional intracellular drug delivery. Biomacromolecules. 2013;14(12):4407–19.PubMed
24.
go back to reference Prabaharan M, Grailer JJ, Steeber DA, Gong S. Thermosensitive micelles based on folate conjugated poly (N-vinylcaprolactam) block-poly (ethylene glycol) for tumor targeted drug delivery. Macromol Biosci. 2009;9(8):744–53.PubMed Prabaharan M, Grailer JJ, Steeber DA, Gong S. Thermosensitive micelles based on folate conjugated poly (N-vinylcaprolactam) block-poly (ethylene glycol) for tumor targeted drug delivery. Macromol Biosci. 2009;9(8):744–53.PubMed
25.
go back to reference Syu WJ, Yu HP, Hsu CY, Rajan YC, Hsu YH, Chang YC, et al. Improved photodynamic cancer treatment by folate conjugated polymeric micelles in a KB xenografted animal model. Small. 2012;8(13):2060–9.PubMed Syu WJ, Yu HP, Hsu CY, Rajan YC, Hsu YH, Chang YC, et al. Improved photodynamic cancer treatment by folate conjugated polymeric micelles in a KB xenografted animal model. Small. 2012;8(13):2060–9.PubMed
26.
go back to reference Fanciullino R, Ciccolini J, Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Criti Rev Oncol/Hematol. 2013;88(3):504–13. Fanciullino R, Ciccolini J, Milano G. Challenges, expectations and limits for nanoparticles-based therapeutics in cancer: a focus on nano-albumin-bound drugs. Criti Rev Oncol/Hematol. 2013;88(3):504–13.
27.
go back to reference Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–9.PubMed Quinlan GJ, Martin GS, Evans TW. Albumin: biochemical properties and therapeutic potential. Hepatology. 2005;41(6):1211–9.PubMed
28.
go back to reference Lindner J, Loibl S, Denkert C, Ataseven B, Fasching P, Pfitzner B, et al. Expression of secreted protein acidic and rich in cysteine (SPARC) in breast cancer and response to neoadjuvant chemotherapy. Ann Oncol. 2014;26(1):95–100.PubMed Lindner J, Loibl S, Denkert C, Ataseven B, Fasching P, Pfitzner B, et al. Expression of secreted protein acidic and rich in cysteine (SPARC) in breast cancer and response to neoadjuvant chemotherapy. Ann Oncol. 2014;26(1):95–100.PubMed
29.
go back to reference Zhang L, Hou S, Mao S, Wei D, Song X, Lu Y. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int J Pharm. 2004;287(1):155–62.PubMed Zhang L, Hou S, Mao S, Wei D, Song X, Lu Y. Uptake of folate-conjugated albumin nanoparticles to the SKOV3 cells. Int J Pharm. 2004;287(1):155–62.PubMed
30.
go back to reference Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;20(5):669–77. Zhao D, Zhao X, Zu Y, Li J, Zhang Y, Jiang R, et al. Preparation, characterization, and in vitro targeted delivery of folate-decorated paclitaxel-loaded bovine serum albumin nanoparticles. Int J Nanomedicine. 2010;20(5):669–77.
31.
go back to reference Hoffman RM, Bouvet M. Nanoparticle albumin-bound-paclitaxel: a limited improvement under the current therapeutic paradigm of pancreatic cancer. Expert Opin Pharmacother. 2015;16(7):943–7.PubMed Hoffman RM, Bouvet M. Nanoparticle albumin-bound-paclitaxel: a limited improvement under the current therapeutic paradigm of pancreatic cancer. Expert Opin Pharmacother. 2015;16(7):943–7.PubMed
32.
go back to reference Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.PubMedPubMedCentral Miele E, Spinelli GP, Miele E, Tomao F, Tomao S. Albumin-bound formulation of paclitaxel (Abraxane® ABI-007) in the treatment of breast cancer. Int J Nanomedicine. 2009;4:99–105.PubMedPubMedCentral
33.
go back to reference Ren K, Dusad A, Dong R, Quan L. Albumin as a delivery carrier for rheumatoid arthritis. J Nanomed Nanotechol. 2013;4(4):176. Ren K, Dusad A, Dong R, Quan L. Albumin as a delivery carrier for rheumatoid arthritis. J Nanomed Nanotechol. 2013;4(4):176.
34.
go back to reference Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012;161(2):429–45.PubMed Kratz F, Elsadek B. Clinical impact of serum proteins on drug delivery. J Control Release. 2012;161(2):429–45.PubMed
35.
go back to reference Hao H, Ma Q, Huang C, He F, Yao P. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013;444(1):77–84.PubMed Hao H, Ma Q, Huang C, He F, Yao P. Preparation, characterization, and in vivo evaluation of doxorubicin loaded BSA nanoparticles with folic acid modified dextran surface. Int J Pharm. 2013;444(1):77–84.PubMed
36.
go back to reference Shen Z, Li Y, Kohama K, Oneill B, Bi J. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res. 2011;63(1):51–8.PubMed Shen Z, Li Y, Kohama K, Oneill B, Bi J. Improved drug targeting of cancer cells by utilizing actively targetable folic acid-conjugated albumin nanospheres. Pharmacol Res. 2011;63(1):51–8.PubMed
37.
go back to reference Su C, Li H, Shi Y, Wang G, Liu L, Zhao L, et al. Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. Int J Pharm. 2014;474(1):202–11.PubMed Su C, Li H, Shi Y, Wang G, Liu L, Zhao L, et al. Carboxymethyl-β-cyclodextrin conjugated nanoparticles facilitate therapy for folate receptor-positive tumor with the mediation of folic acid. Int J Pharm. 2014;474(1):202–11.PubMed
38.
go back to reference Liang X, Sun Y, Liu L, Ma X, Hu X, Fan J, et al. Folate-functionalized nanoparticles for controlled ergosta-4, 6, 8 (14), 22-tetraen-3-one delivery. Int J Pharm. 2013;441(1):1–8.PubMed Liang X, Sun Y, Liu L, Ma X, Hu X, Fan J, et al. Folate-functionalized nanoparticles for controlled ergosta-4, 6, 8 (14), 22-tetraen-3-one delivery. Int J Pharm. 2013;441(1):1–8.PubMed
39.
go back to reference Zu Y, Zhang Y, Zhao X, Zhang Q, Liu Y, Jiang R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folateconjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int J Nanomedicine. 2009;4:321.PubMedPubMedCentral Zu Y, Zhang Y, Zhao X, Zhang Q, Liu Y, Jiang R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folateconjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int J Nanomedicine. 2009;4:321.PubMedPubMedCentral
40.
go back to reference Martínez A, Muñiz E, Teijón C, Iglesias I, Teijón J, Blanco M. Targeting tamoxifen to breast cancer xenograft tumours: preclinical efficacy of folate-attached nanoparticles based on alginate-cysteine/disulphide-bond-reduced albumin. Pharm Res. 2014;31(5):1264–74.PubMed Martínez A, Muñiz E, Teijón C, Iglesias I, Teijón J, Blanco M. Targeting tamoxifen to breast cancer xenograft tumours: preclinical efficacy of folate-attached nanoparticles based on alginate-cysteine/disulphide-bond-reduced albumin. Pharm Res. 2014;31(5):1264–74.PubMed
41.
go back to reference Yang R, An Y, Miao F, Li M, Liu P, Tang Q. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine. 2014;9:4231–43.PubMedPubMedCentral Yang R, An Y, Miao F, Li M, Liu P, Tang Q. Preparation of folic acid-conjugated, doxorubicin-loaded, magnetic bovine serum albumin nanospheres and their antitumor effects in vitro and in vivo. Int J Nanomedicine. 2014;9:4231–43.PubMedPubMedCentral
42.
go back to reference Zhang L, Hou S, Zhang J, Hu W, Wang C. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Arch Pharm Res. 2010;33(8):1193–8.PubMed Zhang L, Hou S, Zhang J, Hu W, Wang C. Preparation, characterization, and in vivo evaluation of mitoxantrone-loaded, folate-conjugated albumin nanoparticles. Arch Pharm Res. 2010;33(8):1193–8.PubMed
43.
go back to reference Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):1–13. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7(1):1–13.
44.
go back to reference Jing Y, Dong-Yan H, Yousaf MZ, Yang-Long H, Song G. Magnetic nanoparticle-based cancer therapy. Chin Physics B. 2013;22(2):027506. Jing Y, Dong-Yan H, Yousaf MZ, Yang-Long H, Song G. Magnetic nanoparticle-based cancer therapy. Chin Physics B. 2013;22(2):027506.
45.
go back to reference Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, et al. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine. 2010;5:861–6.PubMedPubMedCentral Wang J, Chen Y, Chen B, Ding J, Xia G, Gao C, et al. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomedicine. 2010;5:861–6.PubMedPubMedCentral
46.
go back to reference Tang Q, An Y, Liu D, Liu P, Zhang D. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation. PLoS One. 2014;9(9):e106483.PubMedPubMedCentral Tang Q, An Y, Liu D, Liu P, Zhang D. Folate/NIR 797-conjugated albumin magnetic nanospheres: synthesis, characterisation, and in vitro and in vivo targeting evaluation. PLoS One. 2014;9(9):e106483.PubMedPubMedCentral
47.
go back to reference Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8):1222–44. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46(8):1222–44.
48.
go back to reference Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11.PubMed Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005;100(1):1–11.PubMed
49.
go back to reference Majd MH, Barar J, Asgari D, Valizadeh H, Rashidi MR, Kafil V, et al. Targeted fluoromagnetic nanoparticles for imaging of breast cancer MCF-7 cells. Adv Pharmaceut Bull. 2013;3(1):189–95. Majd MH, Barar J, Asgari D, Valizadeh H, Rashidi MR, Kafil V, et al. Targeted fluoromagnetic nanoparticles for imaging of breast cancer MCF-7 cells. Adv Pharmaceut Bull. 2013;3(1):189–95.
50.
go back to reference Ma X, Gong A, Chen B, Zheng J, Chen T, Shen Z, et al. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf B: Biointerfaces. 2014;126:44–9.PubMed Ma X, Gong A, Chen B, Zheng J, Chen T, Shen Z, et al. Exploring a new SPION-based MRI contrast agent with excellent water-dispersibility, high specificity to cancer cells and strong MR imaging efficacy. Colloids Surf B: Biointerfaces. 2014;126:44–9.PubMed
51.
go back to reference Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. 2013;34(33):8382–92.PubMed Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, et al. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials. 2013;34(33):8382–92.PubMed
52.
go back to reference Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, et al. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials. 2014;35(22):5771–84.PubMed Shi J, Wang L, Gao J, Liu Y, Zhang J, Ma R, et al. A fullerene-based multi-functional nanoplatform for cancer theranostic applications. Biomaterials. 2014;35(22):5771–84.PubMed
53.
go back to reference Wen J, Jiang S, Chen Z, Zhao W, Yi Y, Yang R, et al. Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field. Int J Nanomedicine. 2014;9:2043.PubMedPubMedCentral Wen J, Jiang S, Chen Z, Zhao W, Yi Y, Yang R, et al. Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field. Int J Nanomedicine. 2014;9:2043.PubMedPubMedCentral
54.
go back to reference Majetich SA. Magnetic nanoparticles for biomedicine. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4477–8.PubMed Majetich SA. Magnetic nanoparticles for biomedicine. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:4477–8.PubMed
55.
go back to reference Varshosaz J, Hassanzadeh F, Sadeghi Aliabadi H, Nayebsadrian M, Banitalebi M, Rostami M. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res Int. 2014;2014. Varshosaz J, Hassanzadeh F, Sadeghi Aliabadi H, Nayebsadrian M, Banitalebi M, Rostami M. Synthesis and characterization of folate-targeted dextran/retinoic acid micelles for doxorubicin delivery in acute leukemia. BioMed Res Int. 2014;2014.
56.
go back to reference Krais A, Wortmann L, Hermanns L, Feliu N, Vahter M, Stucky S, et al. Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomed: Nanotechnol, Biol Med. 2014;10(7):1421–31. Krais A, Wortmann L, Hermanns L, Feliu N, Vahter M, Stucky S, et al. Targeted uptake of folic acid-functionalized iron oxide nanoparticles by ovarian cancer cells in the presence but not in the absence of serum. Nanomed: Nanotechnol, Biol Med. 2014;10(7):1421–31.
57.
go back to reference Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.PubMed Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, et al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev. 2008;108(6):2064–110.PubMed
58.
go back to reference Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.PubMed Sahoo B, Devi KSP, Dutta S, Maiti TK, Pramanik P, Dhara D. Biocompatible mesoporous silica-coated superparamagnetic manganese ferrite nanoparticles for targeted drug delivery and MR imaging applications. J Colloid Interface Sci. 2014;431:31–41.PubMed
59.
go back to reference Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397–415.PubMedPubMedCentral Wu W, He Q, Jiang C. Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res Lett. 2008;3(11):397–415.PubMedPubMedCentral
60.
go back to reference Guan Y-Q, Zheng Z, Huang Z, Li Z, Niu S, Liu J-M. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization. Scientific reports. 2014;4(4990). Guan Y-Q, Zheng Z, Huang Z, Li Z, Niu S, Liu J-M. Powerful inner/outer controlled multi-target magnetic nanoparticle drug carrier prepared by liquid photo-immobilization. Scientific reports. 2014;4(4990).
61.
go back to reference Badruddoza AZM, Rahman MT, Ghosh S, Hossain MZ, Shi J, Hidajat K, et al. β-Cyclodextrin conjugated magnetic, fluorescent silica core–shell nanoparticles for biomedical applications. Carbohydr Polym. 2013;95(1):449–57.PubMed Badruddoza AZM, Rahman MT, Ghosh S, Hossain MZ, Shi J, Hidajat K, et al. β-Cyclodextrin conjugated magnetic, fluorescent silica core–shell nanoparticles for biomedical applications. Carbohydr Polym. 2013;95(1):449–57.PubMed
62.
go back to reference Erdal N, Gürgül S, Tamer L, Ayaz L. Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver. J Radiat Res. 2008;49(2):181–7.PubMed Erdal N, Gürgül S, Tamer L, Ayaz L. Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver. J Radiat Res. 2008;49(2):181–7.PubMed
63.
go back to reference Qu J, Liu G, Wang Y, Hong R. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21(4):461–7. Qu J, Liu G, Wang Y, Hong R. Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Adv Powder Technol. 2010;21(4):461–7.
64.
go back to reference Viota J, Carazo A, Munoz-Gamez J, Rudzka K, Gómez-Sotomayor R, Ruiz-Extremera A, et al. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater Sci Eng C. 2013;33(3):1183–92. Viota J, Carazo A, Munoz-Gamez J, Rudzka K, Gómez-Sotomayor R, Ruiz-Extremera A, et al. Functionalized magnetic nanoparticles as vehicles for the delivery of the antitumor drug gemcitabine to tumor cells. Physicochemical in vitro evaluation. Mater Sci Eng C. 2013;33(3):1183–92.
65.
go back to reference Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–89.PubMedPubMedCentral Lee GY, Qian WP, Wang L, Wang YA, Staley CA, Satpathy M, et al. Theranostic nanoparticles with controlled release of gemcitabine for targeted therapy and MRI of pancreatic cancer. ACS Nano. 2013;7(3):2078–89.PubMedPubMedCentral
66.
go back to reference Zhang F, Huang X, Zhu L, Guo N, Niu G, Swierczewska M, et al. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials. 2012;33(21):5414–22.PubMedPubMedCentral Zhang F, Huang X, Zhu L, Guo N, Niu G, Swierczewska M, et al. Noninvasive monitoring of orthotopic glioblastoma therapy response using RGD-conjugated iron oxide nanoparticles. Biomaterials. 2012;33(21):5414–22.PubMedPubMedCentral
67.
go back to reference Hu H, Zhang C, An L, Yu Y, Yang H, Sun J, et al. General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal–organic precursors. Chem-A Europ J. 2014;20(23):7160–7. Hu H, Zhang C, An L, Yu Y, Yang H, Sun J, et al. General protocol for the synthesis of functionalized magnetic nanoparticles for magnetic resonance imaging from protected metal–organic precursors. Chem-A Europ J. 2014;20(23):7160–7.
68.
go back to reference Sivakumar B, Aswathy RG, Sreejith R, Nagaoka Y, Iwai S, Suzuki M, et al. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol. 2014;10(6):885–99.PubMed Sivakumar B, Aswathy RG, Sreejith R, Nagaoka Y, Iwai S, Suzuki M, et al. Bacterial exopolysaccharide based magnetic nanoparticles: a versatile nanotool for cancer cell imaging, targeted drug delivery and synergistic effect of drug and hyperthermia mediated cancer therapy. J Biomed Nanotechnol. 2014;10(6):885–99.PubMed
69.
go back to reference Fazilati M. Folate decorated magnetite nanoparticles: synthesis and targeted therapy against ovarian cancer. Cell Biol Int. 2014;38(2):154–63.PubMed Fazilati M. Folate decorated magnetite nanoparticles: synthesis and targeted therapy against ovarian cancer. Cell Biol Int. 2014;38(2):154–63.PubMed
70.
go back to reference Mehrabi M, Javid A, Hashemi A, Rezaei-Zarchi S. Investigation of the effect of folic acid based iron oxide nanoparticles on human leukemic CCRF-CEM cell line. Iran J Pediatr Hematol Oncol. 2013;3(2):47–53. Mehrabi M, Javid A, Hashemi A, Rezaei-Zarchi S. Investigation of the effect of folic acid based iron oxide nanoparticles on human leukemic CCRF-CEM cell line. Iran J Pediatr Hematol Oncol. 2013;3(2):47–53.
71.
go back to reference Gunduz U, Keskin T, Tansık G, Mutlu P, Yalcın S, Unsoy G, et al. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacotherapy. 2014;68(6):729–36. Gunduz U, Keskin T, Tansık G, Mutlu P, Yalcın S, Unsoy G, et al. Idarubicin-loaded folic acid conjugated magnetic nanoparticles as a targetable drug delivery system for breast cancer. Biomed Pharmacotherapy. 2014;68(6):729–36.
72.
go back to reference An Q, Sun C, Li D, Xu K, Guo J, Wang C. Peroxidase-like activity of Fe3O4@ carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces. 2013;5(24):13248–57.PubMed An Q, Sun C, Li D, Xu K, Guo J, Wang C. Peroxidase-like activity of Fe3O4@ carbon nanoparticles enhances ascorbic acid-induced oxidative stress and selective damage to PC-3 prostate cancer cells. ACS Appl Mater Interfaces. 2013;5(24):13248–57.PubMed
73.
go back to reference Li X, Ding J, Wang X, Wei K, Weng J, Wang J. One-pot synthesis and functionalisation of Fe 2 O 3@ CNH 2 nanoparticles for imaging and therapy. Nanobiotechnol, IET. 2014;8(2):93–101. Li X, Ding J, Wang X, Wei K, Weng J, Wang J. One-pot synthesis and functionalisation of Fe 2 O 3@ CNH 2 nanoparticles for imaging and therapy. Nanobiotechnol, IET. 2014;8(2):93–101.
74.
go back to reference Tang Z, Li D, Sun H, Guo X, Chen Y, Zhou S. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials. 2014;35(27):8015–27.PubMed Tang Z, Li D, Sun H, Guo X, Chen Y, Zhou S. Quantitative control of active targeting of nanocarriers to tumor cells through optimization of folate ligand density. Biomaterials. 2014;35(27):8015–27.PubMed
75.
go back to reference Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir. 2004;20(6):2472–7.PubMed Mikhaylova M, Kim DK, Bobrysheva N, Osmolowsky M, Semenov V, Tsakalakos T, et al. Superparamagnetism of magnetite nanoparticles: dependence on surface modification. Langmuir. 2004;20(6):2472–7.PubMed
76.
go back to reference Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem. 2006;118(46):7918–22. Kim J, Park S, Lee JE, Jin SM, Lee JH, Lee IS, et al. Designed fabrication of multifunctional magnetic gold nanoshells and their application to magnetic resonance imaging and photothermal therapy. Angew Chem. 2006;118(46):7918–22.
77.
go back to reference Wu W, Chen B, Cheng J, Wang J, Xu W, Liu L, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine. 2010;5:1079.PubMedPubMedCentral Wu W, Chen B, Cheng J, Wang J, Xu W, Liu L, et al. Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. Int J Nanomedicine. 2010;5:1079.PubMedPubMedCentral
78.
go back to reference Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553–73.PubMed Hervault A, Thanh NTK. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014;6(20):11553–73.PubMed
79.
go back to reference Sivakumar Balasubramanian ARG, Nagaoka Y, Iwai S, Suzuki M, Kizhikkilot V, Yoshida Y, et al. Curcumin and 5-Fluorouracil-loaded, folate-and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomedicine. 2014;9:437–59.PubMedPubMedCentral Sivakumar Balasubramanian ARG, Nagaoka Y, Iwai S, Suzuki M, Kizhikkilot V, Yoshida Y, et al. Curcumin and 5-Fluorouracil-loaded, folate-and transferrin-decorated polymeric magnetic nanoformulation: a synergistic cancer therapeutic approach, accelerated by magnetic hyperthermia. Int J Nanomedicine. 2014;9:437–59.PubMedPubMedCentral
80.
go back to reference Chen B, Cheng J, Wu Y, Gao F, Xu W, Shen H, et al. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice. Int J Nanomedicine. 2009;4:73–8.PubMedPubMedCentral Chen B, Cheng J, Wu Y, Gao F, Xu W, Shen H, et al. Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice. Int J Nanomedicine. 2009;4:73–8.PubMedPubMedCentral
81.
go back to reference Chen B, Cheng J, Shen M, Gao F, Xu W, Shen H, et al. Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells. Int J Nanomedicine. 2009;4:65–71.PubMedPubMedCentral Chen B, Cheng J, Shen M, Gao F, Xu W, Shen H, et al. Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells. Int J Nanomedicine. 2009;4:65–71.PubMedPubMedCentral
82.
go back to reference Goya G, Grazu V, Ibarra M. Magnetic nanoparticles for cancer therapy. Curr Nanosci. 2008;4(1):1–16. Goya G, Grazu V, Ibarra M. Magnetic nanoparticles for cancer therapy. Curr Nanosci. 2008;4(1):1–16.
83.
go back to reference Safarik I, Safarikova M. Magnetically responsive nanocomposite materials for bioapplications. Solid State Phenom. 2009;151:88–94. Safarik I, Safarikova M. Magnetically responsive nanocomposite materials for bioapplications. Solid State Phenom. 2009;151:88–94.
84.
go back to reference Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater. 2007;19(1):33–60. Jeong U, Teng X, Wang Y, Yang H, Xia Y. Superparamagnetic colloids: controlled synthesis and niche applications. Adv Mater. 2007;19(1):33–60.
85.
go back to reference Tang Q, Chen D. Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-diamminedichloroplatinum cisplatin on human ovarian cancer. Bio-Med Mat Eng. 2014;24(1):711–22. Tang Q, Chen D. Study of the therapeutic effect of 188Re labeled folate targeting albumin nanoparticle coupled with cis-diamminedichloroplatinum cisplatin on human ovarian cancer. Bio-Med Mat Eng. 2014;24(1):711–22.
86.
go back to reference Yoo H, Moon S-K, Hwang T, Kim YS, Kim J-H, Choi S-W, et al. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics. Langmuir. 2013;29(20):5962–7.PubMed Yoo H, Moon S-K, Hwang T, Kim YS, Kim J-H, Choi S-W, et al. Multifunctional magnetic nanoparticles modified with polyethylenimine and folic acid for biomedical theranostics. Langmuir. 2013;29(20):5962–7.PubMed
87.
go back to reference Varshosaz J, Sadeghi-Aliabadi H, Ghasemi S, Behdadfar B. Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. BioMed Res Int. 2013;2013:680712.PubMedPubMedCentral Varshosaz J, Sadeghi-Aliabadi H, Ghasemi S, Behdadfar B. Use of magnetic folate-dextran-retinoic acid micelles for dual targeting of doxorubicin in breast cancer. BioMed Res Int. 2013;2013:680712.PubMedPubMedCentral
88.
go back to reference Yang H-W, Hua M-Y, Liu H-L, Huang C-Y, Wei K-C. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl. 2012;5:73–86.PubMedPubMedCentral Yang H-W, Hua M-Y, Liu H-L, Huang C-Y, Wei K-C. Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl. 2012;5:73–86.PubMedPubMedCentral
89.
go back to reference Franckena M, Wit RD, Ansink AC, Notenboom A, Canters RA, Fatehi D, et al. Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int J Hyperth. 2007;23(5):443–50. Franckena M, Wit RD, Ansink AC, Notenboom A, Canters RA, Fatehi D, et al. Weekly systemic cisplatin plus locoregional hyperthermia: an effective treatment for patients with recurrent cervical carcinoma in a previously irradiated area. Int J Hyperth. 2007;23(5):443–50.
90.
go back to reference Chen ZQ, Wen J, Tu WY, Xiao L, Fang Z. A study on early apoptosis of hepatoma Bel-7402 cells in vitro treated by altering-electric magnetic field exposure of extremely low frequency combined with magnetic nano-Fe3O4 powders. Appl Mech Mat. 2013;364:742–8. Chen ZQ, Wen J, Tu WY, Xiao L, Fang Z. A study on early apoptosis of hepatoma Bel-7402 cells in vitro treated by altering-electric magnetic field exposure of extremely low frequency combined with magnetic nano-Fe3O4 powders. Appl Mech Mat. 2013;364:742–8.
91.
go back to reference Klichko Y, Liong M, Choi E, Angelos S, Nel AE, Stoddart JF, et al. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc. 2009;92(s1):S2–S10.PubMedPubMedCentral Klichko Y, Liong M, Choi E, Angelos S, Nel AE, Stoddart JF, et al. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J Am Ceram Soc. 2009;92(s1):S2–S10.PubMedPubMedCentral
92.
go back to reference Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.PubMed Slowing II, Vivero-Escoto JL, Wu C-W, Lin VS-Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv Drug Deliv Rev. 2008;60(11):1278–88.PubMed
93.
go back to reference Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96.PubMedPubMedCentral Liong M, Lu J, Kovochich M, Xia T, Ruehm SG, Nel AE, et al. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano. 2008;2(5):889–96.PubMedPubMedCentral
94.
go back to reference Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS-Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.PubMed Trewyn BG, Slowing II, Giri S, Chen H-T, Lin VS-Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol–gel process and applications in controlled release. Acc Chem Res. 2007;40(9):846–53.PubMed
95.
go back to reference Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18(2):85–99. Safari J, Zarnegar Z. Advanced drug delivery systems: nanotechnology of health design a review. J Saudi Chem Soc. 2014;18(2):85–99.
96.
go back to reference Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tiss Eng. 2013;4:2041731413503357. Kwon S, Singh RK, Perez RA, Neel EAA, Kim H-W, Chrzanowski W. Silica-based mesoporous nanoparticles for controlled drug delivery. J Tiss Eng. 2013;4:2041731413503357.
97.
go back to reference Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117(1):1–9. Wang S. Ordered mesoporous materials for drug delivery. Microporous Mesoporous Mater. 2009;117(1):1–9.
98.
go back to reference Halamová D, Zeleňák V. NSAID naproxen in mesoporous matrix MCM-41: drug uptake and release properties. J Incl Phenom Macrocycl Chem. 2012;72(1-2):15–23. Halamová D, Zeleňák V. NSAID naproxen in mesoporous matrix MCM-41: drug uptake and release properties. J Incl Phenom Macrocycl Chem. 2012;72(1-2):15–23.
99.
go back to reference Ma X, Zhao Y, Ng KW, Zhao Y. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chem-A Europ J. 2013;19(46):15593–603. Ma X, Zhao Y, Ng KW, Zhao Y. Integrated hollow mesoporous silica nanoparticles for target drug/siRNA co-delivery. Chem-A Europ J. 2013;19(46):15593–603.
100.
go back to reference Fan J, Fang G, Wang X, Zeng F, Xiang Y, Wu S. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology. 2011;22(45):455102.PubMed Fan J, Fang G, Wang X, Zeng F, Xiang Y, Wu S. Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology. 2011;22(45):455102.PubMed
101.
go back to reference Mohapatra S, Rout SR, Narayan R, Maiti TK. Multifunctional mesoporous hollow silica nanocapsules for targeted co-delivery of cisplatin-pemetrexed and MR imaging. Dalton Trans. 2014;43(42):15841–50.PubMed Mohapatra S, Rout SR, Narayan R, Maiti TK. Multifunctional mesoporous hollow silica nanocapsules for targeted co-delivery of cisplatin-pemetrexed and MR imaging. Dalton Trans. 2014;43(42):15841–50.PubMed
102.
go back to reference Luo Z, Ding X, Hu Y, Wu S, Xiang Y, Zeng Y, et al. Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano. 2013;7(11):10271–84.PubMed Luo Z, Ding X, Hu Y, Wu S, Xiang Y, Zeng Y, et al. Engineering a hollow nanocontainer platform with multifunctional molecular machines for tumor-targeted therapy in vitro and in vivo. ACS Nano. 2013;7(11):10271–84.PubMed
103.
go back to reference Teng I, Chang Y-J, Wang L-S, Lu H-Y, Wu L-C, Yang C-M, et al. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials. 2013;34(30):7462–70.PubMed Teng I, Chang Y-J, Wang L-S, Lu H-Y, Wu L-C, Yang C-M, et al. Phospholipid-functionalized mesoporous silica nanocarriers for selective photodynamic therapy of cancer. Biomaterials. 2013;34(30):7462–70.PubMed
104.
go back to reference Jain S, Hirst D, O’sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2014;85(1010):101–13. Jain S, Hirst D, O’sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2014;85(1010):101–13.
105.
go back to reference Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.PubMed Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.PubMed
106.
go back to reference Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–51.PubMed Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res. 2008;41(12):1842–51.PubMed
107.
go back to reference Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7.PubMed Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, et al. PEG-modified gold nanorods with a stealth character for in vivo applications. J Control Release. 2006;114(3):343–7.PubMed
108.
go back to reference Llevot A, Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev. 2012;41(1):242–57.PubMed Llevot A, Astruc D. Applications of vectorized gold nanoparticles to the diagnosis and therapy of cancer. Chem Soc Rev. 2012;41(1):242–57.PubMed
109.
go back to reference Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.PubMed Kim D, Jeong YY, Jon S. A drug-loaded aptamer-gold nanoparticle bioconjugate for combined CT imaging and therapy of prostate cancer. ACS Nano. 2010;4(7):3689–96.PubMed
110.
go back to reference Lin J, Zhou Z, Li Z, Zhang C, Wang X, Wang K, et al. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. Nanoscale Res Lett. 2013;8(1):1–7. Lin J, Zhou Z, Li Z, Zhang C, Wang X, Wang K, et al. Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging. Nanoscale Res Lett. 2013;8(1):1–7.
111.
go back to reference Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–84.PubMedPubMedCentral Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, et al. Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc. 2010;132(13):4678–84.PubMedPubMedCentral
112.
go back to reference Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7(7):2080–8. Jain PK, Huang W, El-Sayed MA. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett. 2007;7(7):2080–8.
113.
go back to reference Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem. 2008;120(38):7394–8. Park JH, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ. Micellar hybrid nanoparticles for simultaneous magnetofluorescent imaging and drug delivery. Angew Chem. 2008;120(38):7394–8.
114.
go back to reference Sezgin E, Karatas ÖF, Çam D, Sur İ, Sayin İ, Avci E, et al. Interaction of gold nanoparticles with living cells. Sigma. 2008;26:227–46. Sezgin E, Karatas ÖF, Çam D, Sur İ, Sayin İ, Avci E, et al. Interaction of gold nanoparticles with living cells. Sigma. 2008;26:227–46.
115.
go back to reference Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.PubMed Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6(4):662–8.PubMed
116.
go back to reference De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–9.PubMed De Jong WH, Hagens WI, Krystek P, Burger MC, Sips AJ, Geertsma RE. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials. 2008;29(12):1912–9.PubMed
117.
go back to reference Semmler‐Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4 and 18 nm gold particles in rats. Small. 2008;4(12):2108–11.PubMed Semmler‐Behnke M, Kreyling WG, Lipka J, Fertsch S, Wenk A, Takenaka S, et al. Biodistribution of 1.4 and 18 nm gold particles in rats. Small. 2008;4(12):2108–11.PubMed
118.
go back to reference Pandey S, Mewada A, Thakur M, Shah R, Oza G, Sharon M. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C. 2013;33(7):3716–22. Pandey S, Mewada A, Thakur M, Shah R, Oza G, Sharon M. Biogenic gold nanoparticles as fotillas to fire berberine hydrochloride using folic acid as molecular road map. Mater Sci Eng C. 2013;33(7):3716–22.
119.
go back to reference Park J, Jeon WI, Lee SY, Ock KS, Seo JH, Park J, et al. Confocal Raman microspectroscopic study of folate receptor targeted delivery of 6 mercaptopurine embedded gold nanoparticles in a single cell. J Biomed Mat Res Part A. 2012;100(5):1221–8. Park J, Jeon WI, Lee SY, Ock KS, Seo JH, Park J, et al. Confocal Raman microspectroscopic study of folate receptor targeted delivery of 6 mercaptopurine embedded gold nanoparticles in a single cell. J Biomed Mat Res Part A. 2012;100(5):1221–8.
120.
go back to reference Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:64–71.PubMed Ganeshkumar M, Ponrasu T, Raja MD, Subamekala MK, Suguna L. Green synthesis of pullulan stabilized gold nanoparticles for cancer targeted drug delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2014;130:64–71.PubMed
121.
go back to reference Zhu J, Zheng L, Wen S, Tang Y, Shen M, Zhang G, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2014;35(26):7635–46.PubMed Zhu J, Zheng L, Wen S, Tang Y, Shen M, Zhang G, et al. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials. 2014;35(26):7635–46.PubMed
122.
go back to reference Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and x-ray contrast imaging studies. Small. 2007;3(2):333–41.PubMed Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, et al. Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and x-ray contrast imaging studies. Small. 2007;3(2):333–41.PubMed
123.
go back to reference Fent GM, Casteel SW, Kim DY, Kannan R, Katti K, Chanda N, et al. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed: Nanotechnol, Biol Med. 2009;5(2):128–35. Fent GM, Casteel SW, Kim DY, Kannan R, Katti K, Chanda N, et al. Biodistribution of maltose and gum arabic hybrid gold nanoparticles after intravenous injection in juvenile swine. Nanomed: Nanotechnol, Biol Med. 2009;5(2):128–35.
124.
go back to reference Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, et al. Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf B: Biointerfaces. 2008;63(2):200–8.PubMed Triulzi RC, Dai Q, Zou J, Leblanc RM, Gu Q, Orbulescu J, et al. Photothermal ablation of amyloid aggregates by gold nanoparticles. Colloids Surf B: Biointerfaces. 2008;63(2):200–8.PubMed
125.
go back to reference Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2(1):18–29. Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today. 2007;2(1):18–29.
126.
go back to reference Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, et al. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci. 2014;29(3):939–48.PubMed Mehdizadeh A, Pandesh S, Shakeri-Zadeh A, Kamrava SK, Habib-Agahi M, Farhadi M, et al. The effects of folate-conjugated gold nanorods in combination with plasmonic photothermal therapy on mouth epidermal carcinoma cells. Lasers Med Sci. 2014;29(3):939–48.PubMed
127.
go back to reference Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, et al. Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics. 2014;4(2):142.PubMedPubMedCentral Hu D, Sheng Z, Fang S, Wang Y, Gao D, Zhang P, et al. Folate receptor-targeting gold nanoclusters as fluorescence enzyme mimetic nanoprobes for tumor molecular colocalization diagnosis. Theranostics. 2014;4(2):142.PubMedPubMedCentral
128.
go back to reference Xu S, Liu J, Wang T, Li H, Miao Y, Liu Y, et al. A simple and rapid electrochemical strategy for non-invasive, sensitive and specific detection of cancerous cell. Talanta. 2013;104:122–7.PubMed Xu S, Liu J, Wang T, Li H, Miao Y, Liu Y, et al. A simple and rapid electrochemical strategy for non-invasive, sensitive and specific detection of cancerous cell. Talanta. 2013;104:122–7.PubMed
129.
go back to reference Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine. 2009;4:1–7.PubMedPubMedCentral Bharali DJ, Khalil M, Gurbuz M, Simone TM, Mousa SA. Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine. 2009;4:1–7.PubMedPubMedCentral
130.
go back to reference Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker Jr JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceut Sci Technol. 2000;3(7):232–45. Eichman JD, Bielinska AU, Kukowska-Latallo JF, Baker Jr JR. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Pharmaceut Sci Technol. 2000;3(7):232–45.
131.
go back to reference Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43.PubMed Gillies ER, Frechet JM. Dendrimers and dendritic polymers in drug delivery. Drug Discov Today. 2005;10(1):35–43.PubMed
132.
go back to reference Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker Jr JR, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107–15.PubMed Hong S, Leroueil PR, Majoros IJ, Orr BG, Baker Jr JR, Banaszak Holl MM. The binding avidity of a nanoparticle-based multivalent targeted drug delivery platform. Chem Biol. 2007;14(1):107–15.PubMed
133.
go back to reference Myc A, Douce TB, Ahuja N, Kotlyar A, Kukowska-Latallo J, Thomas TP, et al. Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anti-Cancer Drugs. 2008;19(2):143–9.PubMed Myc A, Douce TB, Ahuja N, Kotlyar A, Kukowska-Latallo J, Thomas TP, et al. Preclinical antitumor efficacy evaluation of dendrimer-based methotrexate conjugates. Anti-Cancer Drugs. 2008;19(2):143–9.PubMed
134.
go back to reference Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2014;32(4):1438–50.PubMed Kesharwani P, Tekade RK, Jain NK. Generation dependent safety and efficacy of folic acid conjugated dendrimer based anticancer drug formulations. Pharm Res. 2014;32(4):1438–50.PubMed
135.
go back to reference Birdhariya B, Kesharwani P, Jain NK. Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev Indust Pharma. 2014(0):1-7. Birdhariya B, Kesharwani P, Jain NK. Effect of surface capping on targeting potential of folate decorated poly (propylene imine) dendrimers. Drug Dev Indust Pharma. 2014(0):1-7.
136.
go back to reference Wong PT, Tang K, Coulter A, Tang S, Baker Jr JR, Choi SK. Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery. Biomacromolecules. 2014;15(11):4134–45.PubMed Wong PT, Tang K, Coulter A, Tang S, Baker Jr JR, Choi SK. Multivalent dendrimer vectors with DNA intercalation motifs for gene delivery. Biomacromolecules. 2014;15(11):4134–45.PubMed
137.
go back to reference Arima H, Arizono M, Higashi T, Yoshimatsu A, Ikeda H, Motoyama K, et al. Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther. 2012;19(5):358–66.PubMed Arima H, Arizono M, Higashi T, Yoshimatsu A, Ikeda H, Motoyama K, et al. Potential use of folate-polyethylene glycol (PEG)-appended dendrimer (G3) conjugate with α-cyclodextrin as DNA carriers to tumor cells. Cancer Gene Ther. 2012;19(5):358–66.PubMed
138.
go back to reference Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, et al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan–PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials. 2013;34(38):10120–32.PubMed Wang M, Hu H, Sun Y, Qiu L, Zhang J, Guan G, et al. A pH-sensitive gene delivery system based on folic acid-PEG-chitosan–PAMAM-plasmid DNA complexes for cancer cell targeting. Biomaterials. 2013;34(38):10120–32.PubMed
139.
go back to reference Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release. 2014;191:115–22.PubMedPubMedCentral Sunoqrot S, Bugno J, Lantvit D, Burdette JE, Hong S. Prolonged blood circulation and enhanced tumor accumulation of folate-targeted dendrimer-polymer hybrid nanoparticles. J Control Release. 2014;191:115–22.PubMedPubMedCentral
140.
go back to reference Liu W, Sun S, Cao Z, Zhang X, Yao K, Lu WW, et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials. 2005;26(15):2705–11.PubMed Liu W, Sun S, Cao Z, Zhang X, Yao K, Lu WW, et al. An investigation on the physicochemical properties of chitosan/DNA polyelectrolyte complexes. Biomaterials. 2005;26(15):2705–11.PubMed
141.
go back to reference Sadigh-Eteghad S, Talebi M, Farhoudi M, Mahmoudi J, Reyhani B. Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences. 2013;18(3):281–3.PubMed Sadigh-Eteghad S, Talebi M, Farhoudi M, Mahmoudi J, Reyhani B. Effects of Levodopa loaded chitosan nanoparticles on cell viability and caspase-3 expression in PC12 neural like cells. Neurosciences. 2013;18(3):281–3.PubMed
142.
143.
go back to reference Xu Q, Wang C-H, Pack DW. Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Des. 2010;16(21):2350.PubMedPubMedCentral Xu Q, Wang C-H, Pack DW. Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Des. 2010;16(21):2350.PubMedPubMedCentral
144.
go back to reference Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, et al. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res Int. 2013;2013. Song H, Su C, Cui W, Zhu B, Liu L, Chen Z, et al. Folic acid-chitosan conjugated nanoparticles for improving tumor-targeted drug delivery. BioMed Res Int. 2013;2013.
145.
go back to reference Pramanik A, Laha D, Pramanik P, Karmakar P. A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J Drug Target. 2013;22(1):23–33.PubMed Pramanik A, Laha D, Pramanik P, Karmakar P. A novel drug “copper acetylacetonate” loaded in folic acid-tagged chitosan nanoparticle for efficient cancer cell targeting. J Drug Target. 2013;22(1):23–33.PubMed
146.
go back to reference Zhou J, Wang J, Xu Q, Xu S, Wen J, Yu Z, et al. Folate-chitosan-gemcitabine core-shell nanoparticles targeted to pancreatic cancer. Chin J Cancer Res. 2013;25(5):527.PubMedPubMedCentral Zhou J, Wang J, Xu Q, Xu S, Wen J, Yu Z, et al. Folate-chitosan-gemcitabine core-shell nanoparticles targeted to pancreatic cancer. Chin J Cancer Res. 2013;25(5):527.PubMedPubMedCentral
147.
go back to reference Zheng Y, Cai Z, Song X, Yu B, Bi Y, Chen Q, et al. Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro. Int J Pharm. 2009;382(1):262–9.PubMed Zheng Y, Cai Z, Song X, Yu B, Bi Y, Chen Q, et al. Receptor mediated gene delivery by folate conjugated N-trimethyl chitosan in vitro. Int J Pharm. 2009;382(1):262–9.PubMed
148.
go back to reference Lee KD, Choi S-H, Kim DH, Lee H-Y, Choi K-C. Self-organized nanoparticles based on chitosan-folic acid and dextran succinate-doxorubicin conjugates for drug targeting. Arch Pharmacal Res. 2014:1-8. Lee KD, Choi S-H, Kim DH, Lee H-Y, Choi K-C. Self-organized nanoparticles based on chitosan-folic acid and dextran succinate-doxorubicin conjugates for drug targeting. Arch Pharmacal Res. 2014:1-8.
149.
go back to reference Gaspar VM, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm Res. 2014;1–16. Gaspar VM, Costa EC, Queiroz JA, Pichon C, Sousa F, Correia IJ. Folate-targeted multifunctional amino acid-chitosan nanoparticles for improved cancer therapy. Pharm Res. 2014;1–16.
150.
go back to reference Jia M, Li Y, Yang X, Huang Y, Wu H, Huang Y, et al. Development of both methotrexate and mitomycin C loaded pegylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces. 2014;6(14):11413–23.PubMed Jia M, Li Y, Yang X, Huang Y, Wu H, Huang Y, et al. Development of both methotrexate and mitomycin C loaded pegylated chitosan nanoparticles for targeted drug codelivery and synergistic anticancer effect. ACS Appl Mater Interfaces. 2014;6(14):11413–23.PubMed
151.
go back to reference Shi Z, Guo R, Li W, Zhang Y, Xue W, Tang Y, et al. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin. J Mater Sci Mater Med. 2014;25(3):723–31.PubMed Shi Z, Guo R, Li W, Zhang Y, Xue W, Tang Y, et al. Nanoparticles of deoxycholic acid, polyethylene glycol and folic acid-modified chitosan for targeted delivery of doxorubicin. J Mater Sci Mater Med. 2014;25(3):723–31.PubMed
152.
go back to reference Li TSC, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid–poly (ethylene glycol)–chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci. 2014;52:48–61.PubMed Li TSC, Yawata T, Honke K. Efficient siRNA delivery and tumor accumulation mediated by ionically cross-linked folic acid–poly (ethylene glycol)–chitosan oligosaccharide lactate nanoparticles: for the potential targeted ovarian cancer gene therapy. Eur J Pharm Sci. 2014;52:48–61.PubMed
153.
go back to reference Allen TM, Brandeis E, Hansen CB, Kao GY, Zalipsky S. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1995;123(2):99–108. Allen TM, Brandeis E, Hansen CB, Kao GY, Zalipsky S. A new strategy for attachment of antibodies to sterically stabilized liposomes resulting in efficient targeting to cancer cells. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1995;123(2):99–108.
154.
go back to reference Liu Y, Li K, Pan J, Liu B, Feng S-S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31(2):330–8.PubMed Liu Y, Li K, Pan J, Liu B, Feng S-S. Folic acid conjugated nanoparticles of mixed lipid monolayer shell and biodegradable polymer core for targeted delivery of Docetaxel. Biomaterials. 2010;31(2):330–8.PubMed
155.
go back to reference Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–6.PubMed Cho K, Wang X, Nie S, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310–6.PubMed
156.
go back to reference Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMed Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.PubMed
157.
go back to reference Tong R, Cheng J. Anticancer polymeric nanomedicines. J Macromol Sci Polym Rev. 2007;47(3):345–81. Tong R, Cheng J. Anticancer polymeric nanomedicines. J Macromol Sci Polym Rev. 2007;47(3):345–81.
158.
go back to reference S-s F, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69. S-s F, Huang G. Effects of emulsifiers on the controlled release of paclitaxel (Taxol®) from nanospheres of biodegradable polymers. J Control Release. 2001;71(1):53–69.
159.
go back to reference Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA: Cancer J Clin. 2008;58(2):97–110. Wang X, Yang L, Chen ZG, Shin DM. Application of nanotechnology in cancer therapy and imaging. CA: Cancer J Clin. 2008;58(2):97–110.
160.
go back to reference Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991;51(19):5329–38.PubMed Campbell IG, Jones TA, Foulkes WD, Trowsdale J. Folate-binding protein is a marker for ovarian cancer. Cancer Res. 1991;51(19):5329–38.PubMed
161.
go back to reference Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg Med Chem. 2010;18(15):5528–34.PubMed Zhang Z, Jia J, Lai Y, Ma Y, Weng J, Sun L. Conjugating folic acid to gold nanoparticles through glutathione for targeting and detecting cancer cells. Bioorg Med Chem. 2010;18(15):5528–34.PubMed
162.
go back to reference Ai J, Xu Y, Li D, Liu Z, Wang E. Folic acid as delivery vehicles: targeting folate conjugated fluorescent nanoparticles to tumors imaging. Talanta. 2012;101:32–7.PubMed Ai J, Xu Y, Li D, Liu Z, Wang E. Folic acid as delivery vehicles: targeting folate conjugated fluorescent nanoparticles to tumors imaging. Talanta. 2012;101:32–7.PubMed
163.
go back to reference Zhu Y, Cheng L, Cheng L, Huang F, Hu Q, Li L, et al. Folate and TAT peptide co-modified liposomes exhibit receptor-dependent highly efficient intracellular transport of payload in vitro and in vivo. Pharm Res. 2014;31(12):3289–303.PubMed Zhu Y, Cheng L, Cheng L, Huang F, Hu Q, Li L, et al. Folate and TAT peptide co-modified liposomes exhibit receptor-dependent highly efficient intracellular transport of payload in vitro and in vivo. Pharm Res. 2014;31(12):3289–303.PubMed
Metadata
Title
Folate-conjugated nanoparticles as a potent therapeutic approach in targeted cancer therapy
Authors
Behdokht Bahrami
Mousa Mohammadnia-Afrouzi
Peyman Bakhshaei
Yaghoub Yazdani
Ghasem Ghalamfarsa
Mehdi Yousefi
Sanam Sadreddini
Farhad Jadidi-Niaragh
Mohammad Hojjat-Farsangi
Publication date
01-08-2015
Publisher
Springer Netherlands
Published in
Tumor Biology / Issue 8/2015
Print ISSN: 1010-4283
Electronic ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-015-3706-6

Other articles of this Issue 8/2015

Tumor Biology 8/2015 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine