Skip to main content
Top
Published in: Molecular Imaging and Biology 6/2017

01-12-2017 | Research Article

Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation

Authors: Zhengyuan Zhou, Ganesan Vaidyanathan, Darryl McDougald, Choong Mo Kang, Irina Balyasnikova, Nick Devoogdt, Angeline N. Ta, Brian R. McNaughton, Michael R. Zalutsky

Published in: Molecular Imaging and Biology | Issue 6/2017

Login to get access

Abstract

Purpose

Our previous studies with F-18-labeled anti-HER2 single-domain antibodies (sdAbs) utilized 5F7, which binds to the same epitope on HER2 as trastuzumab, complicating its use for positron emission tomography (PET) imaging of patients undergoing trastuzumab therapy. On the other hand, sdAb 2Rs15d binds to a different epitope on HER2 and thus might be a preferable vector for imaging in these patients. The aim of this study was to evaluate the tumor targeting of F-18 -labeled 2Rs15d in HER2-expressing breast carcinoma cells and xenografts.

Procedures

sdAb 2Rs15d was labeled with the residualizing labels N-succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]RL-I) and N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB), and the purity and HER2-specific binding affinity and immunoreactivity were assessed after labeling. The biodistribution of I-125- and F-18-labeled 2Rs15d was determined in SCID mice bearing subcutaneous BT474M1 xenografts. MicroPET/x-ray computed tomograph (CT) imaging of [18F]RL-I-2Rs15d was performed in this model and compared to that of nonspecific sdAb [18F]RL-I-R3B23. MicroPET/CT imaging was also done in an intracranial HER2-positive breast cancer brain metastasis model after administration of 2Rs15d-, 5F7-, and R3B23-[18F]RL-I conjugates.

Results

[18F]RL-I was conjugated to 2Rs15d in 40.8 ± 9.1 % yield and with a radiochemical purity of 97–100 %. Its immunoreactive fraction (IRF) and affinity for HER2-specific binding were 79.2 ± 5.4 % and 7.1 ± 0.4 nM, respectively. [125I]SGMIB was conjugated to 2Rs15d in 58.4 ± 8.2 % yield and with a radiochemical purity of 95–99 %; its IRF and affinity for HER2-specific binding were 79.0 ± 12.9 % and 4.5 ± 0.8 nM, respectively. Internalized radioactivity in BT474M1 cells in vitro for [18F]RL-I-2Rs15d was 43.7 ± 3.6, 36.5 ± 2.6, and 21.7 ± 1.2 % of initially bound radioactivity at 1, 2, and 4 h, respectively, and was similar to that seen for [125I]SGMIB-2Rs15d. Uptake of [18F]RL-I-2Rs15d in subcutaneous xenografts was 16–20 %ID/g over 1–3 h. Subcutaneous tumor could be clearly delineated by microPET/CT imaging with [18F]RL-I-2Rs15d but not with [18F]RL-I-R3B23. Intracranial breast cancer brain metastases could be visualized after intravenous administration of both [18F]RL-I-2Rs15d and [18F]RL-I-5F7.

Conclusions

Although radiolabeled 2Rs15d conjugates exhibited lower tumor cell retention both in vitro and in vivo than that observed previously for 5F7, given that it binds to a different epitope on HER2 from those targeted by the clinically utilized HER2-targeted therapeutic antibodies trastuzumab and pertuzumab, F-18-labeled 2Rs15d has potential for assessing HER2 status by PET imaging after trastuzumab and/or pertuzumab therapy.
Literature
1.
go back to reference Schettini F, Buono G, Cardalesi C et al (2016) Hormone receptor/human epidermal growth factor receptor 2-positive breast cancer: where we are now and where we are going. Cancer Treat Rev 46:20–26CrossRefPubMed Schettini F, Buono G, Cardalesi C et al (2016) Hormone receptor/human epidermal growth factor receptor 2-positive breast cancer: where we are now and where we are going. Cancer Treat Rev 46:20–26CrossRefPubMed
2.
go back to reference Santa-Maria CA, Nye L, Mutonga MB et al (2016) Management of metastatic HER2-positive breast cancer: where are we and where do we go from here? Oncology (Williston Park) 30:148–155 Santa-Maria CA, Nye L, Mutonga MB et al (2016) Management of metastatic HER2-positive breast cancer: where are we and where do we go from here? Oncology (Williston Park) 30:148–155
3.
go back to reference Recondo G Jr, de la Vega M, Galanternik F et al (2016) Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag Res 8:57–65PubMedPubMedCentral Recondo G Jr, de la Vega M, Galanternik F et al (2016) Novel approaches to target HER2-positive breast cancer: trastuzumab emtansine. Cancer Manag Res 8:57–65PubMedPubMedCentral
4.
go back to reference Maximiano S, Magalhaes P, Guerreiro MP, Morgado M (2016) Trastuzumab in the treatment of breast cancer. BioDrugs 30:75–86CrossRefPubMed Maximiano S, Magalhaes P, Guerreiro MP, Morgado M (2016) Trastuzumab in the treatment of breast cancer. BioDrugs 30:75–86CrossRefPubMed
5.
go back to reference Gebhart G, Flamen P, De Vries EG et al (2016) Imaging diagnostic and therapeutic targets: human epidermal growth factor receptor 2. J Nucl Med 57(Suppl 1):81S–88SCrossRefPubMed Gebhart G, Flamen P, De Vries EG et al (2016) Imaging diagnostic and therapeutic targets: human epidermal growth factor receptor 2. J Nucl Med 57(Suppl 1):81S–88SCrossRefPubMed
6.
go back to reference Nitta H, Kelly BD, Allred C et al (2016) The assessment of HER2 status in breast cancer: the past, the present, and the future. Pathol Int 66:313–324CrossRefPubMed Nitta H, Kelly BD, Allred C et al (2016) The assessment of HER2 status in breast cancer: the past, the present, and the future. Pathol Int 66:313–324CrossRefPubMed
7.
go back to reference Karagoz Ozen DS, Ozturk MA, Aydin O et al (2014) Receptor expression discrepancy between primary and metastatic breast cancer lesions. Oncol Res Treat 37:622–626CrossRefPubMed Karagoz Ozen DS, Ozturk MA, Aydin O et al (2014) Receptor expression discrepancy between primary and metastatic breast cancer lesions. Oncol Res Treat 37:622–626CrossRefPubMed
8.
go back to reference Rack B, Zombirt E, Trapp E et al (2016) Comparison of HER2 expression in primary tumor and disseminated tumor cells in the bone marrow of breast cancer patients. Oncology 90:232–238CrossRefPubMed Rack B, Zombirt E, Trapp E et al (2016) Comparison of HER2 expression in primary tumor and disseminated tumor cells in the bone marrow of breast cancer patients. Oncology 90:232–238CrossRefPubMed
9.
go back to reference Kramer-Marek G, Oyen WJ (2016) Targeting the human epidermal growth factor receptors: imaging biomarkers from bench to bedside. J Nucl Med 57:996–1001CrossRefPubMed Kramer-Marek G, Oyen WJ (2016) Targeting the human epidermal growth factor receptors: imaging biomarkers from bench to bedside. J Nucl Med 57:996–1001CrossRefPubMed
10.
go back to reference Sorensen J, Velikyan I, Sandberg D et al (2016) Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics 6:262–271CrossRefPubMedPubMedCentral Sorensen J, Velikyan I, Sandberg D et al (2016) Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 affibody PET/CT. Theranostics 6:262–271CrossRefPubMedPubMedCentral
11.
go back to reference Mendler CT, Gehring T, Wester HJ et al (2015) 89Zr-labeled versus 124I-labeled αHER2 Fab with optimized plasma half-life for high-contrast tumor imaging in vivo. J Nucl Med 56:1112–1118CrossRefPubMed Mendler CT, Gehring T, Wester HJ et al (2015) 89Zr-labeled versus 124I-labeled αHER2 Fab with optimized plasma half-life for high-contrast tumor imaging in vivo. J Nucl Med 56:1112–1118CrossRefPubMed
12.
go back to reference Ma T, Sun X, Cui L et al (2014) Molecular imaging reveals trastuzumab-induced epidermal growth factor receptor downregulation in vivo. J Nucl Med 55:1002–1007CrossRefPubMed Ma T, Sun X, Cui L et al (2014) Molecular imaging reveals trastuzumab-induced epidermal growth factor receptor downregulation in vivo. J Nucl Med 55:1002–1007CrossRefPubMed
13.
go back to reference Olafsen T, Sirk SJ, Olma S et al (2012) ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol 33:669–677CrossRefPubMed Olafsen T, Sirk SJ, Olma S et al (2012) ImmunoPET using engineered antibody fragments: fluorine-18 labeled diabodies for same-day imaging. Tumour Biol 33:669–677CrossRefPubMed
14.
go back to reference Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916CrossRefPubMedPubMedCentral Olafsen T, Kenanova VE, Sundaresan G et al (2005) Optimizing radiolabeled engineered anti-p185HER2 antibody fragments for in vivo imaging. Cancer Res 65:5907–5916CrossRefPubMedPubMedCentral
15.
go back to reference Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM (2015) Nanobody-based cancer therapy of solid tumors. Nanomedicine 10:161–174CrossRefPubMed Kijanka M, Dorresteijn B, Oliveira S, van Bergen en Henegouwen PM (2015) Nanobody-based cancer therapy of solid tumors. Nanomedicine 10:161–174CrossRefPubMed
16.
go back to reference De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:263–270CrossRefPubMed De Meyer T, Muyldermans S, Depicker A (2014) Nanobody-based products as research and diagnostic tools. Trends Biotechnol 32:263–270CrossRefPubMed
17.
go back to reference Keyaerts M, Xavier C, Heemskerk J et al (2016) Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med 57:27–33CrossRefPubMed Keyaerts M, Xavier C, Heemskerk J et al (2016) Phase I study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med 57:27–33CrossRefPubMed
18.
go back to reference Xavier C, Blykers A, Vaneycken I et al (2016) 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol 43:247–252CrossRefPubMed Xavier C, Blykers A, Vaneycken I et al (2016) 18F-nanobody for PET imaging of HER2 overexpressing tumors. Nucl Med Biol 43:247–252CrossRefPubMed
19.
go back to reference Vaidyanathan G, McDougald D, Choi J et al (2016) Preclinical evaluation of 18F-labeled anti-HER2 nanobody conjugates for imaging HER2 receptor expression by immuno-PET. J Nucl Med 57:967–973CrossRefPubMedPubMedCentral Vaidyanathan G, McDougald D, Choi J et al (2016) Preclinical evaluation of 18F-labeled anti-HER2 nanobody conjugates for imaging HER2 receptor expression by immuno-PET. J Nucl Med 57:967–973CrossRefPubMedPubMedCentral
20.
go back to reference Revets HM BC, Hoogenboom HM. (2011) Amino acid sequences directed against HER2 and polypeptides comprising the same for the treatment of cancers and/or tumors. US Patent 2011/0059090 Al Revets HM BC, Hoogenboom HM. (2011) Amino acid sequences directed against HER2 and polypeptides comprising the same for the treatment of cancers and/or tumors. US Patent 2011/0059090 Al
21.
go back to reference Rockberg J, Schwenk JM, Uhlen M (2009) Discovery of epitopes for targeting the human epidermal growth factor receptor 2 (HER2) with antibodies. Mol Oncol 3:238–247CrossRefPubMedPubMedCentral Rockberg J, Schwenk JM, Uhlen M (2009) Discovery of epitopes for targeting the human epidermal growth factor receptor 2 (HER2) with antibodies. Mol Oncol 3:238–247CrossRefPubMedPubMedCentral
22.
go back to reference Kramer-Marek G, Gijsen M, Kiesewetter DO et al (2012) Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med 53:629–637CrossRefPubMed Kramer-Marek G, Gijsen M, Kiesewetter DO et al (2012) Potential of PET to predict the response to trastuzumab treatment in an ErbB2-positive human xenograft tumor model. J Nucl Med 53:629–637CrossRefPubMed
23.
go back to reference Vaneycken I, Devoogdt N, Van Gassen N et al (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446CrossRefPubMed Vaneycken I, Devoogdt N, Van Gassen N et al (2011) Preclinical screening of anti-HER2 nanobodies for molecular imaging of breast cancer. FASEB J 25:2433–2446CrossRefPubMed
24.
go back to reference Xavier C, Vaneycken I, D’Huyvetter M et al (2013) Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 54:776–784CrossRefPubMed Xavier C, Vaneycken I, D’Huyvetter M et al (2013) Synthesis, preclinical validation, dosimetry, and toxicity of 68Ga-NOTA-anti-HER2 nanobodies for iPET imaging of HER2 receptor expression in cancer. J Nucl Med 54:776–784CrossRefPubMed
25.
go back to reference Vaidyanathan G, McDougald D, Choi J et al (2016) N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)ben zoate ([18F]SFBTMGMB): a residualizing label for 18F-labeling of internalizing biomolecules. Org Biomol Chem 14:1261–1271CrossRefPubMedPubMedCentral Vaidyanathan G, McDougald D, Choi J et al (2016) N-Succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)ben zoate ([18F]SFBTMGMB): a residualizing label for 18F-labeling of internalizing biomolecules. Org Biomol Chem 14:1261–1271CrossRefPubMedPubMedCentral
26.
go back to reference Vaidyanathan G, Zalutsky MR (2007) Synthesis of N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2:282–286CrossRefPubMed Vaidyanathan G, Zalutsky MR (2007) Synthesis of N-succinimidyl 4-guanidinomethyl-3-[*I]iodobenzoate: a radio-iodination agent for labeling internalizing proteins and peptides. Nat Protoc 2:282–286CrossRefPubMed
27.
go back to reference Pruszynski M, Koumarianou E, Vaidyanathan G et al (2013) Targeting breast carcinoma with radioiodinated anti-HER2 nanobody. Nucl Med Biol 40:52–59CrossRefPubMed Pruszynski M, Koumarianou E, Vaidyanathan G et al (2013) Targeting breast carcinoma with radioiodinated anti-HER2 nanobody. Nucl Med Biol 40:52–59CrossRefPubMed
28.
go back to reference Gray MA, Tao RN, DePorter SM et al (2016) A nanobody activation immunotherapeutic that selectively destroys HER2-positive breast cancer cells. Chembiochem 17:155–158CrossRefPubMed Gray MA, Tao RN, DePorter SM et al (2016) A nanobody activation immunotherapeutic that selectively destroys HER2-positive breast cancer cells. Chembiochem 17:155–158CrossRefPubMed
29.
go back to reference Lemaire M, D’Huyvetter M, Lahoutte T et al (2014) Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies. Leukemia 28:444–447CrossRefPubMed Lemaire M, D’Huyvetter M, Lahoutte T et al (2014) Imaging and radioimmunotherapy of multiple myeloma with anti-idiotypic nanobodies. Leukemia 28:444–447CrossRefPubMed
30.
go back to reference Yu Z, Xia W, Wang HY et al (2006) Antitumor activity of an Ets protein, PEA3, in breast cancer cell lines MDA-MB-361DYT2 and BT474M1. Mol Carcinog 45:667–675CrossRefPubMed Yu Z, Xia W, Wang HY et al (2006) Antitumor activity of an Ets protein, PEA3, in breast cancer cell lines MDA-MB-361DYT2 and BT474M1. Mol Carcinog 45:667–675CrossRefPubMed
31.
go back to reference Choi J, Vaidyanathan G, Koumarianou E et al (2014) N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: influence of isomeric substitution on radiolabeling and target cell residualization. Nucl Med Biol 41:802–812CrossRefPubMedPubMedCentral Choi J, Vaidyanathan G, Koumarianou E et al (2014) N-Succinimidyl guanidinomethyl iodobenzoate protein radiohalogenation agents: influence of isomeric substitution on radiolabeling and target cell residualization. Nucl Med Biol 41:802–812CrossRefPubMedPubMedCentral
32.
go back to reference Lindmo T, Boven E, Cuttitta F et al (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Meth 72:77–89CrossRef Lindmo T, Boven E, Cuttitta F et al (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Meth 72:77–89CrossRef
33.
go back to reference Kanojia D, Balyasnikova IV, Morshed RA et al (2015) Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 33:2985–2994CrossRefPubMedPubMedCentral Kanojia D, Balyasnikova IV, Morshed RA et al (2015) Neural stem cells secreting anti-HER2 antibody improve survival in a preclinical model of HER2 overexpressing breast cancer brain metastases. Stem Cells 33:2985–2994CrossRefPubMedPubMedCentral
34.
go back to reference Velikyan I, Wennborg A, Feldwisch J et al (2016) Good manufacturing practice production of [68Ga]Ga-ABY-025 for HER2 specific breast cancer imaging. Am J Nucl Med Mol Imaging 6:135–153PubMedPubMedCentral Velikyan I, Wennborg A, Feldwisch J et al (2016) Good manufacturing practice production of [68Ga]Ga-ABY-025 for HER2 specific breast cancer imaging. Am J Nucl Med Mol Imaging 6:135–153PubMedPubMedCentral
35.
go back to reference Trousil S, Hoppmann S, Nguyen QD et al (2014) Positron emission tomography imaging with 18F-labeled ZHER2:2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin Cancer Res 20:1632–1643CrossRefPubMed Trousil S, Hoppmann S, Nguyen QD et al (2014) Positron emission tomography imaging with 18F-labeled ZHER2:2891 affibody for detection of HER2 expression and pharmacodynamic response to HER2-modulating therapies. Clin Cancer Res 20:1632–1643CrossRefPubMed
36.
go back to reference Pruszynski M, Koumarianou E, Vaidyanathan G et al (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55:650–656CrossRefPubMedPubMedCentral Pruszynski M, Koumarianou E, Vaidyanathan G et al (2014) Improved tumor targeting of anti-HER2 nanobody through N-succinimidyl 4-guanidinomethyl-3-iodobenzoate radiolabeling. J Nucl Med 55:650–656CrossRefPubMedPubMedCentral
37.
go back to reference Sanchez-Crespo A (2013) Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRefPubMed Sanchez-Crespo A (2013) Comparison of gallium-68 and fluorine-18 imaging characteristics in positron emission tomography. Appl Radiat Isot 76:55–62CrossRefPubMed
38.
go back to reference D’Huyvetter M, Aerts A, Xavier C et al (2012) Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging 7:254–264CrossRefPubMed D’Huyvetter M, Aerts A, Xavier C et al (2012) Development of 177Lu-nanobodies for radioimmunotherapy of HER2-positive breast cancer: evaluation of different bifunctional chelators. Contrast Media Mol Imaging 7:254–264CrossRefPubMed
39.
40.
go back to reference Banappagari S, McCall A, Fontenot K et al (2013) Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain. Eur J Med Chem 65:60–69CrossRefPubMedPubMedCentral Banappagari S, McCall A, Fontenot K et al (2013) Design, synthesis and characterization of peptidomimetic conjugate of BODIPY targeting HER2 protein extracellular domain. Eur J Med Chem 65:60–69CrossRefPubMedPubMedCentral
41.
go back to reference Fuentes G, Scaltriti M, Baselga J, Verma CS (2011) Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res 13:R54CrossRefPubMedPubMedCentral Fuentes G, Scaltriti M, Baselga J, Verma CS (2011) Synergy between trastuzumab and pertuzumab for human epidermal growth factor 2 (Her2) from colocalization: an in silico based mechanism. Breast Cancer Res 13:R54CrossRefPubMedPubMedCentral
42.
go back to reference Xu FJ, Yu YH, Bae DS et al (1997) Radioiodinated antibody targeting of the HER-2/neu oncoprotein. Nucl Med Biol 24:451–459CrossRefPubMed Xu FJ, Yu YH, Bae DS et al (1997) Radioiodinated antibody targeting of the HER-2/neu oncoprotein. Nucl Med Biol 24:451–459CrossRefPubMed
43.
go back to reference Langmuir VK, Mendonca HL, Woo DV (1992) Comparisons between two monoclonal antibodies that bind to the same antigen but have differing affinities: uptake kinetics and 125I-antibody therapy efficacy in multicell spheroids. Cancer Res 52:4728–4734PubMed Langmuir VK, Mendonca HL, Woo DV (1992) Comparisons between two monoclonal antibodies that bind to the same antigen but have differing affinities: uptake kinetics and 125I-antibody therapy efficacy in multicell spheroids. Cancer Res 52:4728–4734PubMed
44.
go back to reference Wargalla UC, Reisfeld RA (1989) Rate of internalization of an immunotoxin correlates with cytotoxic activity against human tumor cells. Proc Natl Acad Sci U S A 86:5146–5150CrossRefPubMedPubMedCentral Wargalla UC, Reisfeld RA (1989) Rate of internalization of an immunotoxin correlates with cytotoxic activity against human tumor cells. Proc Natl Acad Sci U S A 86:5146–5150CrossRefPubMedPubMedCentral
45.
go back to reference Ward DM, Kaplan J (1990) The rate of internalization of different receptor-ligand complexes in alveolar macrophages is receptor-specific. Biochem J 270:369–374CrossRefPubMedPubMedCentral Ward DM, Kaplan J (1990) The rate of internalization of different receptor-ligand complexes in alveolar macrophages is receptor-specific. Biochem J 270:369–374CrossRefPubMedPubMedCentral
46.
go back to reference Stemmler HJ, Schmitt M, Harbeck N et al (2006) Application of intrathecal trastuzumab (Herceptin trademark) for treatment of meningeal carcinomatosis in HER2-overexpressing metastatic breast cancer. Oncol Rep 15:1373–1377PubMed Stemmler HJ, Schmitt M, Harbeck N et al (2006) Application of intrathecal trastuzumab (Herceptin trademark) for treatment of meningeal carcinomatosis in HER2-overexpressing metastatic breast cancer. Oncol Rep 15:1373–1377PubMed
47.
go back to reference Stemmler HJ, Schmitt M, Willems A et al (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anti-Cancer Drugs 18:23–28CrossRefPubMed Stemmler HJ, Schmitt M, Willems A et al (2007) Ratio of trastuzumab levels in serum and cerebrospinal fluid is altered in HER2-positive breast cancer patients with brain metastases and impairment of blood-brain barrier. Anti-Cancer Drugs 18:23–28CrossRefPubMed
48.
go back to reference Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592CrossRefPubMed Dijkers EC, Oude Munnink TH, Kosterink JG et al (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. Clin Pharmacol Ther 87:586–592CrossRefPubMed
Metadata
Title
Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation
Authors
Zhengyuan Zhou
Ganesan Vaidyanathan
Darryl McDougald
Choong Mo Kang
Irina Balyasnikova
Nick Devoogdt
Angeline N. Ta
Brian R. McNaughton
Michael R. Zalutsky
Publication date
01-12-2017
Publisher
Springer US
Published in
Molecular Imaging and Biology / Issue 6/2017
Print ISSN: 1536-1632
Electronic ISSN: 1860-2002
DOI
https://doi.org/10.1007/s11307-017-1082-x

Other articles of this Issue 6/2017

Molecular Imaging and Biology 6/2017 Go to the issue