Skip to main content
Top
Published in: BMC Cancer 1/2020

01-12-2020 | Fluorescence in Situ Hybridization | Research article

Simplified molecular classification of lung adenocarcinomas based on EGFR, KRAS, and TP53 mutations

Authors: Roberto Ruiz-Cordero, Junsheng Ma, Abha Khanna, Genevieve Lyons, Waree Rinsurongkawong, Roland Bassett, Ming Guo, Mark J. Routbort, Jianjun Zhang, Ferdinandos Skoulidis, John Heymach, Emily B. Roarty, Zhenya Tang, L. Jeffrey Medeiros, Keyur P. Patel, Rajyalakshmi Luthra, Sinchita Roy-Chowdhuri

Published in: BMC Cancer | Issue 1/2020

Login to get access

Abstract

Background

Gene expression profiling has consistently identified three molecular subtypes of lung adenocarcinoma that have prognostic implications. To facilitate stratification of patients with this disease into similar molecular subtypes, we developed and validated a simple, mutually exclusive classification.

Methods

Mutational status of EGFR, KRAS, and TP53 was used to define seven mutually exclusive molecular subtypes. A development cohort of 283 cytology specimens of lung adenocarcinoma was used to evaluate the associations between the proposed classification and clinicopathologic variables including demographic characteristics, smoking history, fluorescence in situ hybridization and molecular results. For validation and prognostic assessment, 63 of the 283 cytology specimens with available survival data were combined with a separate cohort of 428 surgical pathology specimens of lung adenocarcinoma.

Results

The proposed classification yielded significant associations between these molecular subtypes and clinical and prognostic features. We found better overall survival in patients who underwent surgery and had tumors enriched for EGFR mutations. Worse overall survival was associated with older age, stage IV disease, and tumors with co-mutations in KRAS and TP53. Interestingly, neither chemotherapy nor radiation therapy showed benefit to overall survival.

Conclusions

The mutational status of EGFR, KRAS, and TP53 can be used to easily classify lung adenocarcinoma patients into seven subtypes that show a relationship with prognosis, especially in patients who underwent surgery, and these subtypes are similar to classifications based on more complex genomic methods reported previously.
Appendix
Available only for authorised users
Literature
2.
4.
go back to reference Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.CrossRef Dela Cruz CS, Tanoue LT, Matthay RA. Lung cancer: epidemiology, etiology, and prevention. Clin Chest Med. 2011;32(4):605–44.CrossRef
6.
go back to reference Pinsky PF, Church TR, Izmirlian G, Kramer BS. The National Lung Screening Trial: results stratified by demographics, smoking history, and lung cancer histology. Cancer. 2013;119(22):3976–83.PubMedCrossRef Pinsky PF, Church TR, Izmirlian G, Kramer BS. The National Lung Screening Trial: results stratified by demographics, smoking history, and lung cancer histology. Cancer. 2013;119(22):3976–83.PubMedCrossRef
7.
go back to reference Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001;98(24):13790–5.PubMedPubMedCentralCrossRef Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc Natl Acad Sci U S A. 2001;98(24):13790–5.PubMedPubMedCentralCrossRef
8.
go back to reference Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef Cancer Genome Atlas Research N. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511(7511):543–50.CrossRef
9.
go back to reference Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, et al. Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol. 2004;22(5):811–9.PubMedCrossRef Endoh H, Tomida S, Yatabe Y, Konishi H, Osada H, Tajima K, et al. Prognostic model of pulmonary adenocarcinoma by expression profiling of eight genes as determined by quantitative real-time reverse transcriptase polymerase chain reaction. J Clin Oncol. 2004;22(5):811–9.PubMedCrossRef
10.
go back to reference Faruki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol. 2017;12(6):943–53.PubMedPubMedCentralCrossRef Faruki H, Mayhew GM, Serody JS, Hayes DN, Perou CM, Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J Thorac Oncol. 2017;12(6):943–53.PubMedPubMedCentralCrossRef
11.
go back to reference Gordon GJ, Richards WG, Sugarbaker DJ, Jaklitsch MT, Bueno R. A prognostic test for adenocarcinoma of the lung from gene expression profiling data. Cancer Epidemiol Biomarkers Prev. 2003;12(9):905–10.PubMed Gordon GJ, Richards WG, Sugarbaker DJ, Jaklitsch MT, Bueno R. A prognostic test for adenocarcinoma of the lung from gene expression profiling data. Cancer Epidemiol Biomarkers Prev. 2003;12(9):905–10.PubMed
12.
go back to reference Hayes DN, Monti S, Parmigiani G, Gilks CB, Naoki K, Bhattacharjee A, et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol. 2006;24(31):5079–90.PubMedCrossRef Hayes DN, Monti S, Parmigiani G, Gilks CB, Naoki K, Bhattacharjee A, et al. Gene expression profiling reveals reproducible human lung adenocarcinoma subtypes in multiple independent patient cohorts. J Clin Oncol. 2006;24(31):5079–90.PubMedCrossRef
13.
go back to reference Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E. A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res. 2004;10(9):2922–7.PubMedCrossRef Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E. A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clin Cancer Res. 2004;10(9):2922–7.PubMedCrossRef
14.
go back to reference Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010;29(1):23–36.PubMedCrossRef Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010;29(1):23–36.PubMedCrossRef
15.
go back to reference Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward MC, et al. Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS One. 2012;7(5):e36530.PubMedPubMedCentralCrossRef Wilkerson MD, Yin X, Walter V, Zhao N, Cabanski CR, Hayward MC, et al. Differential pathogenesis of lung adenocarcinoma subtypes involving sequence mutations, copy number, chromosomal instability, and methylation. PLoS One. 2012;7(5):e36530.PubMedPubMedCentralCrossRef
16.
go back to reference Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.PubMedCrossRef Chen HY, Yu SL, Chen CH, Chang GC, Chen CY, Yuan A, et al. A five-gene signature and clinical outcome in non-small-cell lung cancer. N Engl J Med. 2007;356(1):11–20.PubMedCrossRef
18.
go back to reference Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn. 2013;15(5):607–22.PubMedCrossRef Singh RR, Patel KP, Routbort MJ, Reddy NG, Barkoh BA, Handal B, et al. Clinical validation of a next-generation sequencing screen for mutational hotspots in 46 cancer-related genes. J Mol Diagn. 2013;15(5):607–22.PubMedCrossRef
19.
go back to reference Singh RR, Patel KP, Routbort MJ, Aldape K, Lu X, Manekia J, et al. Clinical massively parallel next-generation sequencing analysis of 409 cancer-related genes for mutations and copy number variations in solid tumours. Br J Cancer. 2014;111(10):2014–23.PubMedPubMedCentralCrossRef Singh RR, Patel KP, Routbort MJ, Aldape K, Lu X, Manekia J, et al. Clinical massively parallel next-generation sequencing analysis of 409 cancer-related genes for mutations and copy number variations in solid tumours. Br J Cancer. 2014;111(10):2014–23.PubMedPubMedCentralCrossRef
20.
go back to reference Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.PubMedCrossRef Kanagal-Shamanna R, Portier BP, Singh RR, Routbort MJ, Aldape KD, Handal BA, et al. Next-generation sequencing-based multi-gene mutation profiling of solid tumors using fine needle aspiration samples: promises and challenges for routine clinical diagnostics. Mod Pathol. 2014;27(2):314–27.PubMedCrossRef
21.
go back to reference Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013. Team RC. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2013.
22.
go back to reference Ringner M, Staaf J. Consensus of gene expression phenotypes and prognostic risk predictors in primary lung adenocarcinoma. Oncotarget. 2016;7(33):52957–73.PubMedPubMedCentralCrossRef Ringner M, Staaf J. Consensus of gene expression phenotypes and prognostic risk predictors in primary lung adenocarcinoma. Oncotarget. 2016;7(33):52957–73.PubMedPubMedCentralCrossRef
23.
go back to reference Nakaoku T, Tsuta K, Ichikawa H, Shiraishi K, Sakamoto H, Enari M, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20(12):3087–93.PubMedPubMedCentralCrossRef Nakaoku T, Tsuta K, Ichikawa H, Shiraishi K, Sakamoto H, Enari M, et al. Druggable oncogene fusions in invasive mucinous lung adenocarcinoma. Clin Cancer Res. 2014;20(12):3087–93.PubMedPubMedCentralCrossRef
24.
go back to reference Rekhtman N, Ang DC, Riely GJ, Ladanyi M, Moreira AL. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol. 2013;26(10):1307–19.PubMedPubMedCentralCrossRef Rekhtman N, Ang DC, Riely GJ, Ladanyi M, Moreira AL. KRAS mutations are associated with solid growth pattern and tumor-infiltrating leukocytes in lung adenocarcinoma. Mod Pathol. 2013;26(10):1307–19.PubMedPubMedCentralCrossRef
25.
go back to reference West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, et al. A novel classification of lung cancer into molecular subtypes. PLoS One. 2012;7(2):e31906.PubMedPubMedCentralCrossRef West L, Vidwans SJ, Campbell NP, Shrager J, Simon GR, Bueno R, et al. A novel classification of lung cancer into molecular subtypes. PLoS One. 2012;7(2):e31906.PubMedPubMedCentralCrossRef
26.
go back to reference Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung Cancer. N Engl J Med. 2017;376(22):2109–21.PubMedCrossRef Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung Cancer. N Engl J Med. 2017;376(22):2109–21.PubMedCrossRef
27.
go back to reference Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19.PubMedPubMedCentralCrossRef Seo JS, Ju YS, Lee WC, Shin JY, Lee JK, Bleazard T, et al. The transcriptional landscape and mutational profile of lung adenocarcinoma. Genome Res. 2012;22(11):2109–19.PubMedPubMedCentralCrossRef
28.
go back to reference Swanton C, Govindan R. Clinical implications of genomic discoveries in lung Cancer. N Engl J Med. 2016;374(19):1864–73.PubMedCrossRef Swanton C, Govindan R. Clinical implications of genomic discoveries in lung Cancer. N Engl J Med. 2016;374(19):1864–73.PubMedCrossRef
29.
go back to reference Clinical Lung Cancer Genome P, Network Genomic M. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153. Clinical Lung Cancer Genome P, Network Genomic M. A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5(209):209ra153.
30.
go back to reference Zhang R, Tian P, Chen B, Wang T, Li W. The prognostic impact of TP53 comutation in EGFR mutant lung cancer patients: a systematic review and meta-analysis. Postgrad Med. 2019;131(3):199–206.PubMedCrossRef Zhang R, Tian P, Chen B, Wang T, Li W. The prognostic impact of TP53 comutation in EGFR mutant lung cancer patients: a systematic review and meta-analysis. Postgrad Med. 2019;131(3):199–206.PubMedCrossRef
31.
go back to reference Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77.PubMedPubMedCentralCrossRef Skoulidis F, Byers LA, Diao L, Papadimitrakopoulou VA, Tong P, Izzo J, et al. Co-occurring genomic alterations define major subsets of KRAS-mutant lung adenocarcinoma with distinct biology, immune profiles, and therapeutic vulnerabilities. Cancer Discov. 2015;5(8):860–77.PubMedPubMedCentralCrossRef
32.
go back to reference Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–24.PubMedCrossRef Dong ZY, Zhong WZ, Zhang XC, Su J, Xie Z, Liu SY, et al. Potential predictive value of TP53 and KRAS mutation status for response to PD-1 blockade immunotherapy in lung adenocarcinoma. Clin Cancer Res. 2017;23(12):3012–24.PubMedCrossRef
33.
go back to reference Pezzi TA, Mohamed AS, Fuller CD, Blanchard P, Pezzi C, Sepesi B, et al. Radiation therapy is independently associated with worse survival after R0-resection for stage I-II non-small cell lung Cancer: an analysis of the National Cancer Data Base. Ann Surg Oncol. 2017;24(5):1419–27.PubMedCrossRef Pezzi TA, Mohamed AS, Fuller CD, Blanchard P, Pezzi C, Sepesi B, et al. Radiation therapy is independently associated with worse survival after R0-resection for stage I-II non-small cell lung Cancer: an analysis of the National Cancer Data Base. Ann Surg Oncol. 2017;24(5):1419–27.PubMedCrossRef
34.
go back to reference Stinchcombe TE, Zhang Y, Vokes EE, Schiller JH, Bradley JD, Kelly K, et al. Pooled analysis of individual patient data on concurrent Chemoradiotherapy for stage III non-small-cell lung Cancer in elderly patients compared with younger patients who participated in US National Cancer Institute cooperative group studies. J Clin Oncol. 2017;35(25):2885–92.PubMedPubMedCentralCrossRef Stinchcombe TE, Zhang Y, Vokes EE, Schiller JH, Bradley JD, Kelly K, et al. Pooled analysis of individual patient data on concurrent Chemoradiotherapy for stage III non-small-cell lung Cancer in elderly patients compared with younger patients who participated in US National Cancer Institute cooperative group studies. J Clin Oncol. 2017;35(25):2885–92.PubMedPubMedCentralCrossRef
35.
go back to reference Hagiwara K, Kobayashi K. Importance of the cytological samples for the epidermal growth factor receptor gene mutation test for non-small cell lung cancer. Cancer Sci. 2013;104(3):291–7.PubMedCrossRefPubMedCentral Hagiwara K, Kobayashi K. Importance of the cytological samples for the epidermal growth factor receptor gene mutation test for non-small cell lung cancer. Cancer Sci. 2013;104(3):291–7.PubMedCrossRefPubMedCentral
36.
go back to reference Roy Chowdhuri S, Hanson J, Cheng J, Rodriguez-Canales J, Fetsch P, Balis U, et al. Semiautomated laser capture microdissection of lung adenocarcinoma cytology samples. Acta Cytol. 2012;56(6):622–31.PubMedCrossRef Roy Chowdhuri S, Hanson J, Cheng J, Rodriguez-Canales J, Fetsch P, Balis U, et al. Semiautomated laser capture microdissection of lung adenocarcinoma cytology samples. Acta Cytol. 2012;56(6):622–31.PubMedCrossRef
37.
go back to reference Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30(4):499–508.PubMedCrossRef Roy-Chowdhuri S, Chen H, Singh RR, Krishnamurthy S, Patel KP, Routbort MJ, et al. Concurrent fine needle aspirations and core needle biopsies: a comparative study of substrates for next-generation sequencing in solid organ malignancies. Mod Pathol. 2017;30(4):499–508.PubMedCrossRef
38.
go back to reference Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, et al. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol. 2016;124(4):254–60.PubMedCrossRef Roy-Chowdhuri S, Chow CW, Kane MK, Yao H, Wistuba II, Krishnamurthy S, et al. Optimizing the DNA yield for molecular analysis from cytologic preparations. Cancer Cytopathol. 2016;124(4):254–60.PubMedCrossRef
39.
go back to reference Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123(11):659–68.PubMedCrossRef Roy-Chowdhuri S, Goswami RS, Chen H, Patel KP, Routbort MJ, Singh RR, et al. Factors affecting the success of next-generation sequencing in cytology specimens. Cancer Cytopathol. 2015;123(11):659–68.PubMedCrossRef
40.
go back to reference Roy-Chowdhuri S, Roy S, Monaco SE, Routbort MJ, Pantanowitz L. Big data from small samples: informatics of next-generation sequencing in cytopathology. Cancer. 2017;125(4):236–44. Roy-Chowdhuri S, Roy S, Monaco SE, Routbort MJ, Pantanowitz L. Big data from small samples: informatics of next-generation sequencing in cytopathology. Cancer. 2017;125(4):236–44.
41.
go back to reference Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience. Arch Pathol Lab Med. 2016;140:1191–9.PubMedCrossRef Roy-Chowdhuri S, Stewart J. Preanalytic variables in cytology: lessons learned from next-generation sequencing-the MD Anderson experience. Arch Pathol Lab Med. 2016;140:1191–9.PubMedCrossRef
42.
go back to reference Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung Cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46.PubMedCrossRef Lindeman NI, Cagle PT, Aisner DL, Arcila ME, Beasley MB, Bernicker EH, et al. Updated molecular testing guideline for the selection of lung Cancer patients for treatment with targeted tyrosine kinase inhibitors: guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321–46.PubMedCrossRef
43.
go back to reference Ramaswamy S. Translating cancer genomics into clinical oncology. N Engl J Med. 2004;350(18):1814–6.PubMedCrossRef Ramaswamy S. Translating cancer genomics into clinical oncology. N Engl J Med. 2004;350(18):1814–6.PubMedCrossRef
Metadata
Title
Simplified molecular classification of lung adenocarcinomas based on EGFR, KRAS, and TP53 mutations
Authors
Roberto Ruiz-Cordero
Junsheng Ma
Abha Khanna
Genevieve Lyons
Waree Rinsurongkawong
Roland Bassett
Ming Guo
Mark J. Routbort
Jianjun Zhang
Ferdinandos Skoulidis
John Heymach
Emily B. Roarty
Zhenya Tang
L. Jeffrey Medeiros
Keyur P. Patel
Rajyalakshmi Luthra
Sinchita Roy-Chowdhuri
Publication date
01-12-2020
Publisher
BioMed Central
Published in
BMC Cancer / Issue 1/2020
Electronic ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-020-6579-z

Other articles of this Issue 1/2020

BMC Cancer 1/2020 Go to the issue
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine