Skip to main content
Top
Published in: European Radiology 4/2013

01-04-2013 | Magnetic Resonance

First-pass contrast-enhanced renal MRA at 7 Tesla: initial results

Authors: L. Umutlu, S. Maderwald, S. Kinner, O. Kraff, A. K. Bitz, S. Orzada, S. Johst, K. Wrede, M. Forsting, M. E. Ladd, T. C. Lauenstein, H. H. Quick

Published in: European Radiology | Issue 4/2013

Login to get access

Abstract

Objective

The aim of this study was to assess the feasibility of first-pass contrast-enhanced renal MR angiography (MRA) at 7 T.

Methods

In vivo first-pass contrast-enhanced high-field examinations were obtained in eight healthy subjects on a 7-T whole-body MRI. A custom-built body transmit/receive radiofrequency (RF) coil and RF system suitable for RF shimming were used for image acquisition. For dynamic imaging, gadobutrol was injected intravenously and coronal unenhanced, arterial and venous data sets using a T1-weighted spoiled gradient-echo sequence were obtained. Qualitative image analysis and assessment of artefact impairment were performed by two senior radiologists using a five-point scale (5 = excellent, 1 = non-diagnostic). SNR and CNR of the perirenal abdominal aorta and both main renal arteries were assessed.

Results

Qualitative image evaluation revealed overall high-quality delineation of all assessed segments of the unenhanced arterial vasculature (meanunenhanced 4.13). Nevertheless, the application of contrast agent revealed an improvement in vessel delineation of all the vessel segments assessed, confirmed by qualitative (meanunenhanced 4.13 to meancontrast-enhanced 4.85) and quantitative analysis (SNR meanunenhanced 64.3 to meancontrast-enhanced 98.4).

Conclusion

This study demonstrates the feasibility and current constraints of ultra-high-field contrast-enhanced renal MRA relative to unenhanced MRA.

Key Points

First-pass contrast-enhanced renal MRA at 7 T is technically feasible.
Unenhanced renal MRA offers inherent hyperintense delineation of renal arterial vasculature.
Contrast media application improves vessel assessment of renal arteries at 7 T.
Literature
1.
go back to reference Soulez G, Pasowicz M, Benea G et al (2008) Renal artery stenosis evaluation: diagnostic performance of gadobenate dimeglumine-enhanced MR angiography comparison with DSA. Radiology 247:273–285PubMedCrossRef Soulez G, Pasowicz M, Benea G et al (2008) Renal artery stenosis evaluation: diagnostic performance of gadobenate dimeglumine-enhanced MR angiography comparison with DSA. Radiology 247:273–285PubMedCrossRef
2.
go back to reference De Cobelli F, Venturini M, Vanzulli A et al (2002) Renal arterial stenosis: prospective comparison of color Doppler US and Breath-hold, three-dimensional, dynamic, gadolinium-enhanced MR angiography. Radiology 214:373–380 De Cobelli F, Venturini M, Vanzulli A et al (2002) Renal arterial stenosis: prospective comparison of color Doppler US and Breath-hold, three-dimensional, dynamic, gadolinium-enhanced MR angiography. Radiology 214:373–380
3.
go back to reference De Cobelli F, Vanzulli A, Sironi S et al (1997) Renal artery stenosis: evaluation with breath-hold, three-dimensional, dynamic, gadolinium-enhanced versus three-dimensional, phase-contrast MR angiography. Radiology 205:689–695PubMed De Cobelli F, Vanzulli A, Sironi S et al (1997) Renal artery stenosis: evaluation with breath-hold, three-dimensional, dynamic, gadolinium-enhanced versus three-dimensional, phase-contrast MR angiography. Radiology 205:689–695PubMed
4.
go back to reference Willmann JK, Wildermuth S, Pfammatter T et al (2003) Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi–detector row CT Angiography. Radiology 226:798–811PubMedCrossRef Willmann JK, Wildermuth S, Pfammatter T et al (2003) Aortoiliac and renal arteries: prospective intraindividual comparison of contrast-enhanced three-dimensional MR angiography and multi–detector row CT Angiography. Radiology 226:798–811PubMedCrossRef
5.
go back to reference Michaely HJ, Kramer H, Dietrich O et al (2007) Intraindividual comparison of high-spatial-resolution abdominal MR angiography at 1.5 T and 3.0 T: initial experience1. Radiology 244:907–913PubMedCrossRef Michaely HJ, Kramer H, Dietrich O et al (2007) Intraindividual comparison of high-spatial-resolution abdominal MR angiography at 1.5 T and 3.0 T: initial experience1. Radiology 244:907–913PubMedCrossRef
6.
go back to reference Umutlu L, Orzada S, Kinner S et al (2010) Renal imaging at 7 Tesla: preliminary results. Eur Radiol 21:841–849PubMedCrossRef Umutlu L, Orzada S, Kinner S et al (2010) Renal imaging at 7 Tesla: preliminary results. Eur Radiol 21:841–849PubMedCrossRef
7.
go back to reference Umutlu L, Kraff O, Orzada S et al (2011) Dynamic contrast-enhanced renal MRI at 7 Tesla: preliminary results. Invest Radiol 46:425–433PubMedCrossRef Umutlu L, Kraff O, Orzada S et al (2011) Dynamic contrast-enhanced renal MRI at 7 Tesla: preliminary results. Invest Radiol 46:425–433PubMedCrossRef
9.
go back to reference Maderwald S, Ladd S, Gizewski E et al (2008) To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. Magnet Reson Mater Phys, Biol Med 21:159–167CrossRef Maderwald S, Ladd S, Gizewski E et al (2008) To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. Magnet Reson Mater Phys, Biol Med 21:159–167CrossRef
10.
go back to reference Metzger GJ, Simonson J, Bi X (2010) Initial experience with non-contrast enhanced renal angiography at 7.0 Tesla. Proceedings of the 18th Annual Meeting of ISMRM, Sweden (Abstract 403) Metzger GJ, Simonson J, Bi X (2010) Initial experience with non-contrast enhanced renal angiography at 7.0 Tesla. Proceedings of the 18th Annual Meeting of ISMRM, Sweden (Abstract 403)
11.
go back to reference Orzada S, Quick HH, Ladd ME, et al (2009) A flexible 8-channel transmit/receive body coil for 7 T human imaging. Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, HI, USA (Abstract 2999) Orzada S, Quick HH, Ladd ME, et al (2009) A flexible 8-channel transmit/receive body coil for 7 T human imaging. Proceedings of the 17th Annual Meeting of ISMRM, Honolulu, HI, USA (Abstract 2999)
12.
go back to reference Bitz A, Brote I, Orzada S, et al (2009) Am 8-channel add-on RF shimming system for whole-body 7 Tesla MRI including real-time SAR monitoring. Proceedings of the 17th Annual Meeting of ISMRM, HI, USA (Abstract 4767) Bitz A, Brote I, Orzada S, et al (2009) Am 8-channel add-on RF shimming system for whole-body 7 Tesla MRI including real-time SAR monitoring. Proceedings of the 17th Annual Meeting of ISMRM, HI, USA (Abstract 4767)
13.
go back to reference Christ A, Kainz W, Hahn EG et al (2010) The Virtual Family—development of anatomical CAD models of two adults and two children for dosimetric simulations. Phys Med Biol 55:N2–N38CrossRef Christ A, Kainz W, Hahn EG et al (2010) The Virtual Family—development of anatomical CAD models of two adults and two children for dosimetric simulations. Phys Med Biol 55:N2–N38CrossRef
14.
go back to reference Conolly S, Nishimura D, Macovski A (1988) Variable-rate selective excitation. J Magn Reson 78:440–458 Conolly S, Nishimura D, Macovski A (1988) Variable-rate selective excitation. J Magn Reson 78:440–458
15.
go back to reference Michaely HJ, Kramer H, Attenberger U et al (2007) Renal magnetic resonance angiography at 3.0 T: technical feasibility and clinical perspectives. Top Magn Reson Imag 18:117–125CrossRef Michaely HJ, Kramer H, Attenberger U et al (2007) Renal magnetic resonance angiography at 3.0 T: technical feasibility and clinical perspectives. Top Magn Reson Imag 18:117–125CrossRef
16.
go back to reference Fenchel M, Nael K, Deshpande VS et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Investig Radiol 41:697–703CrossRef Fenchel M, Nael K, Deshpande VS et al (2006) Renal magnetic resonance angiography at 3.0 Tesla using a 32-element phased-array coil system and parallel imaging in 2 directions. Investig Radiol 41:697–703CrossRef
17.
go back to reference Willinek WA, Born M, Simon B et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging—Initial experience. Radiology 229:913–920PubMedCrossRef Willinek WA, Born M, Simon B et al (2003) Time-of-flight MR angiography: comparison of 3.0-T imaging and 1.5-T imaging—Initial experience. Radiology 229:913–920PubMedCrossRef
18.
go back to reference Grinstead JW, Rooney W, Laub G (2010) The origins of bright blood MPRAGE at 7 Tesla and a simultaneous method for T1 imaging and non-contrast MRA. Proc Intl Soc Mag Reson Med 18:(Abstract 1429) Grinstead JW, Rooney W, Laub G (2010) The origins of bright blood MPRAGE at 7 Tesla and a simultaneous method for T1 imaging and non-contrast MRA. Proc Intl Soc Mag Reson Med 18:(Abstract 1429)
19.
go back to reference Metzger GJ, van de Morteele PF (2011) Non-contrast enhanced renal MRA at 7 T. Proc Intl Soc Mag Reson Med 19. (Abstract) Metzger GJ, van de Morteele PF (2011) Non-contrast enhanced renal MRA at 7 T. Proc Intl Soc Mag Reson Med 19. (Abstract)
20.
go back to reference Noebauer-Huhmann IM, Szomolanyi P, Juras V et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45:554–558PubMedCrossRef Noebauer-Huhmann IM, Szomolanyi P, Juras V et al (2010) Gadolinium-based magnetic resonance contrast agents at 7 Tesla: in vitro T1 relaxivities in human blood plasma. Invest Radiol 45:554–558PubMedCrossRef
21.
go back to reference Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef Rohrer M, Bauer H, Mintorovitch J et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40:715–724PubMedCrossRef
Metadata
Title
First-pass contrast-enhanced renal MRA at 7 Tesla: initial results
Authors
L. Umutlu
S. Maderwald
S. Kinner
O. Kraff
A. K. Bitz
S. Orzada
S. Johst
K. Wrede
M. Forsting
M. E. Ladd
T. C. Lauenstein
H. H. Quick
Publication date
01-04-2013
Publisher
Springer-Verlag
Published in
European Radiology / Issue 4/2013
Print ISSN: 0938-7994
Electronic ISSN: 1432-1084
DOI
https://doi.org/10.1007/s00330-012-2666-0

Other articles of this Issue 4/2013

European Radiology 4/2013 Go to the issue