Skip to main content
Top
Published in: Journal of Neurodevelopmental Disorders 1/2020

Open Access 01-12-2020 | Research

Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader–Willi syndrome

Authors: Rui-Ni Wu, Wei-Chen Hung, Ching-Tsuey Chen, Li-Ping Tsai, Wen-Sung Lai, Ming-Yuan Min, Shi-Bing Wong

Published in: Journal of Neurodevelopmental Disorders | Issue 1/2020

Login to get access

Abstract

Background

Prader–Willi syndrome (PWS) is a neurodevelopmental disorder characterized by multiple respiratory, cognitive, endocrine, and behavioral symptoms, such as central apnea, intellectual disabilities, exaggerated stress responses, and temper tantrums. The locus coeruleus noradrenergic system (LC-NE) modulates a diverse range of behaviors, including arousal, learning, pain modulation, and stress-induced negative affective states, which are possibly correlated with the pathogenesis of PWS phenotypes. Therefore, we evaluated the LC-NE neuronal activity of necdin-deficient mice, an animal model of PWS.

Methods

Heterozygous necdin-deficient mice (B6.Cg-Ndntm1ky) were bred from wild-type (WT) females to generate WT (+m/+p) and heterozygotes (+m/−p) animals, which were examined of LC-NE neuronal activity, developmental reflexes, and plethysmography.

Results

On slice electrophysiology, LC-NE neurons of Ndntm1ky mice with necdin deficiency showed significantly decreased spontaneous activities and impaired excitability, which was mediated by enhanced A-type voltage-dependent potassium currents. Ndntm1ky mice also exhibited the neonatal phenotypes of PWS, such as hypotonia and blunt respiratory responses to hypercapnia.

Conclusions

LC-NE neuronal firing activity decreased in necdin-deficient mice, suggesting that LC, the primary source of norepinephrine in the central nervous system, is possibly involved in PWS pathogenesis.
Appendix
Available only for authorised users
Literature
2.
go back to reference Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26.PubMedCrossRef Cassidy SB, Schwartz S, Miller JL, Driscoll DJ. Prader-Willi syndrome. Genet Med. 2012;14(1):10–26.PubMedCrossRef
3.
go back to reference Schwartz L, Holland A, Dykens E, Strong T, Roof E, Bohonowych J. Prader-Willi syndrome mental health research strategy workshop proceedings: the state of the science and future directions. Orphanet J Rare Dis 2016;11(1):1-7. Schwartz L, Holland A, Dykens E, Strong T, Roof E, Bohonowych J. Prader-Willi syndrome mental health research strategy workshop proceedings: the state of the science and future directions. Orphanet J Rare Dis 2016;11(1):1-7.
4.
go back to reference Jauregi J, Laurier V, Copet P, Tauber M, Thuilleaux D. Behavioral profile of adults with Prader-Willi syndrome: correlations with individual and environmental variables. J Neurodev Disord. 2013;5(1):18.PubMedPubMedCentralCrossRef Jauregi J, Laurier V, Copet P, Tauber M, Thuilleaux D. Behavioral profile of adults with Prader-Willi syndrome: correlations with individual and environmental variables. J Neurodev Disord. 2013;5(1):18.PubMedPubMedCentralCrossRef
5.
go back to reference Sinnema M, Einfeld SL, Schrander-Stumpel CT, Maaskant MA, Boer H, Curfs LM. Behavioral phenotype in adults with Prader-Willi syndrome. Res Dev Disabil. 2011;32(2):604–12.PubMedCrossRef Sinnema M, Einfeld SL, Schrander-Stumpel CT, Maaskant MA, Boer H, Curfs LM. Behavioral phenotype in adults with Prader-Willi syndrome. Res Dev Disabil. 2011;32(2):604–12.PubMedCrossRef
6.
go back to reference Hiraiwa R, Maegaki Y, Oka A, Ohno K. Behavioral and psychiatric disorders in Prader-Willi syndrome: a population study in Japan. Brain and Development. 2007;29(9):535–42.PubMedCrossRef Hiraiwa R, Maegaki Y, Oka A, Ohno K. Behavioral and psychiatric disorders in Prader-Willi syndrome: a population study in Japan. Brain and Development. 2007;29(9):535–42.PubMedCrossRef
7.
go back to reference Tunnicliffe P, Woodcock K, Bull L, Oliver C, Penhallow J. Temper outbursts in Prader–Willi syndrome: causes, behavioural and emotional sequence and responses by carers. J Intellect Disabil Res. 2014;58(2):134–50.PubMedCrossRef Tunnicliffe P, Woodcock K, Bull L, Oliver C, Penhallow J. Temper outbursts in Prader–Willi syndrome: causes, behavioural and emotional sequence and responses by carers. J Intellect Disabil Res. 2014;58(2):134–50.PubMedCrossRef
8.
go back to reference Ehrhart F, Janssen KJM, Coort SL, Evelo CT, Curfs LMG. Prader-Willi syndrome and Angelman syndrome: visualisation of the molecular pathways for two chromosomal disorders. World J Biol Psychiatry. 2019;20(9):670–823.PubMedCrossRef Ehrhart F, Janssen KJM, Coort SL, Evelo CT, Curfs LMG. Prader-Willi syndrome and Angelman syndrome: visualisation of the molecular pathways for two chromosomal disorders. World J Biol Psychiatry. 2019;20(9):670–823.PubMedCrossRef
9.
go back to reference Kuwajima T, Nishimura I, Yoshikawa K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci. 2006;26(20):5383–92.PubMedPubMedCentralCrossRef Kuwajima T, Nishimura I, Yoshikawa K. Necdin promotes GABAergic neuron differentiation in cooperation with Dlx homeodomain proteins. J Neurosci. 2006;26(20):5383–92.PubMedPubMedCentralCrossRef
10.
go back to reference Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am J Pathol. 2005;167(1):175–91.PubMedPubMedCentralCrossRef Pagliardini S, Ren J, Wevrick R, Greer JJ. Developmental abnormalities of neuronal structure and function in prenatal mice lacking the Prader-Willi syndrome gene necdin. Am J Pathol. 2005;167(1):175–91.PubMedPubMedCentralCrossRef
11.
go back to reference Zanella S, Watrin F, Mebarek S, Marly F, Roussel M, Gire C, et al. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome. J Neurosci. 2008;28(7):1745–55.PubMedPubMedCentralCrossRef Zanella S, Watrin F, Mebarek S, Marly F, Roussel M, Gire C, et al. Necdin plays a role in the serotonergic modulation of the mouse respiratory network: implication for Prader-Willi syndrome. J Neurosci. 2008;28(7):1745–55.PubMedPubMedCentralCrossRef
12.
go back to reference Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, et al. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. eLife. 2017;6:e32640.PubMedPubMedCentralCrossRef Matarazzo V, Caccialupi L, Schaller F, Shvarev Y, Kourdougli N, Bertoni A, et al. Necdin shapes serotonergic development and SERT activity modulating breathing in a mouse model for Prader-Willi syndrome. eLife. 2017;6:e32640.PubMedPubMedCentralCrossRef
13.
go back to reference Bervini S, Herzog H. Mouse models of Prader–Willi syndrome: a systematic review. Front Neuroendocrinol. 2013;34(2):107–19.PubMedCrossRef Bervini S, Herzog H. Mouse models of Prader–Willi syndrome: a systematic review. Front Neuroendocrinol. 2013;34(2):107–19.PubMedCrossRef
14.
go back to reference Schrander-Stumpel CTRM, Curfs LMG, Sastrowijoto P, Cassidy SB, Schrander JJP, Fryns J-P. Prader–Willi syndrome: causes of death in an international series of 27 cases. Am J Med Genet A. 2004;124A(4):333–8.PubMedCrossRef Schrander-Stumpel CTRM, Curfs LMG, Sastrowijoto P, Cassidy SB, Schrander JJP, Fryns J-P. Prader–Willi syndrome: causes of death in an international series of 27 cases. Am J Med Genet A. 2004;124A(4):333–8.PubMedCrossRef
15.
go back to reference Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol. 2013;20(1):44–55.PubMedCrossRef Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol. 2013;20(1):44–55.PubMedCrossRef
16.
go back to reference Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits. 2017;11:108.PubMedPubMedCentralCrossRef Avery MC, Krichmar JL. Neuromodulatory systems and their interactions: a review of models, theories, and experiments. Front Neural Circuits. 2017;11:108.PubMedPubMedCentralCrossRef
18.
go back to reference Wong-Riley MTT, Liu Q. Neurochemical development of brain stem nuclei involved in the control of respiration. Respir Physiol Neurobiol. 2005;149(1–3):83–98.PubMedCrossRef Wong-Riley MTT, Liu Q. Neurochemical development of brain stem nuclei involved in the control of respiration. Respir Physiol Neurobiol. 2005;149(1–3):83–98.PubMedCrossRef
20.
go back to reference Kiyashchenko LI, Mileykovskiy BY, Lai Y-Y, Siegel JM. Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol. 2001;85(5):2008–16.PubMedCrossRef Kiyashchenko LI, Mileykovskiy BY, Lai Y-Y, Siegel JM. Increased and decreased muscle tone with orexin (hypocretin) microinjections in the locus coeruleus and pontine inhibitory area. J Neurophysiol. 2001;85(5):2008–16.PubMedCrossRef
21.
go back to reference Livingston FR, Arens R, Bailey SL, Keens TG, Sally Ward LD. Hypercapnic arousal responses in Prader-Willi syndrome. CHEST. 1995;108(6):1627–31.PubMedCrossRef Livingston FR, Arens R, Bailey SL, Keens TG, Sally Ward LD. Hypercapnic arousal responses in Prader-Willi syndrome. CHEST. 1995;108(6):1627–31.PubMedCrossRef
22.
go back to reference Nixon GM, Brouillette RT. Sleep and breathing in Prader-Willi syndrome. Pediatr Pulmonol. 2002;34(3):209–17.PubMedCrossRef Nixon GM, Brouillette RT. Sleep and breathing in Prader-Willi syndrome. Pediatr Pulmonol. 2002;34(3):209–17.PubMedCrossRef
23.
go back to reference Priano L, Miscio G, Grugni G, Milano E, Baudo S, Sellitti L, et al. On the origin of sensory impairment and altered pain perception in Prader–Willi syndrome: a neurophysiological study. Eur J Pain. 2009;13(8):829–35.PubMedCrossRef Priano L, Miscio G, Grugni G, Milano E, Baudo S, Sellitti L, et al. On the origin of sensory impairment and altered pain perception in Prader–Willi syndrome: a neurophysiological study. Eur J Pain. 2009;13(8):829–35.PubMedCrossRef
24.
go back to reference Ovchinnikova TV, Levitskaya NG, Voskresenskaya OG, Yakimenko ZA, Tagaev AA, Ovchinnikova AY, et al. Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem Biodivers. 2007;4(6):1374–87.PubMedCrossRef Ovchinnikova TV, Levitskaya NG, Voskresenskaya OG, Yakimenko ZA, Tagaev AA, Ovchinnikova AY, et al. Neuroleptic properties of the ion-channel-forming peptaibol zervamicin: locomotor activity and behavioral effects. Chem Biodivers. 2007;4(6):1374–87.PubMedCrossRef
25.
go back to reference Bourgeois JR, Ferland RJ. Loss of the neurodevelopmental Joubert syndrome causing protein, Ahi1, causes motor and muscle development delays independent of central nervous system involvement. Dev Biol. 2019;448(1):36–47.PubMedPubMedCentralCrossRef Bourgeois JR, Ferland RJ. Loss of the neurodevelopmental Joubert syndrome causing protein, Ahi1, causes motor and muscle development delays independent of central nervous system involvement. Dev Biol. 2019;448(1):36–47.PubMedPubMedCentralCrossRef
26.
go back to reference Heyser CJ. Assessment of developmental milestones in rodents. Curr Protoc Neurosci 2003;25(1):8.18.1-8..5. Heyser CJ. Assessment of developmental milestones in rodents. Curr Protoc Neurosci 2003;25(1):8.18.1-8..5.
27.
go back to reference Stettner GM, Zanella S, Huppke P, Gärtner J, Hilaire G, Dutschmann M. Spontaneous central apneas occur in the C57BL/6 J mouse strain. Respir Physiol Neurobiol. 2008;160(1):21–7.PubMedCrossRef Stettner GM, Zanella S, Huppke P, Gärtner J, Hilaire G, Dutschmann M. Spontaneous central apneas occur in the C57BL/6 J mouse strain. Respir Physiol Neurobiol. 2008;160(1):21–7.PubMedCrossRef
28.
go back to reference Wang H-Y, Kuo Z-C, Fu Y-S, Chen R-F, Min M-Y, Yang H-W. GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats. J Physiol. 2015;593(1):161–80.PubMedCrossRef Wang H-Y, Kuo Z-C, Fu Y-S, Chen R-F, Min M-Y, Yang H-W. GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats. J Physiol. 2015;593(1):161–80.PubMedCrossRef
29.
go back to reference Burdakov D, Ashcroft FM. Cholecystokinin tunes firing of an electrically distinct subset of arcuate nucleus neurons by activating A-type potassium channels. J Neurosci. 2002;22(15):6380–7.PubMedPubMedCentralCrossRef Burdakov D, Ashcroft FM. Cholecystokinin tunes firing of an electrically distinct subset of arcuate nucleus neurons by activating A-type potassium channels. J Neurosci. 2002;22(15):6380–7.PubMedPubMedCentralCrossRef
30.
go back to reference Min MY, Wu YW, Shih PY, Lu HW, Wu Y, Hsu CL, et al. Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience. 2010;168(3):633–45.PubMedCrossRef Min MY, Wu YW, Shih PY, Lu HW, Wu Y, Hsu CL, et al. Roles of A-type potassium currents in tuning spike frequency and integrating synaptic transmission in noradrenergic neurons of the A7 catecholamine cell group in rats. Neuroscience. 2010;168(3):633–45.PubMedCrossRef
31.
go back to reference K-i K, Hosokawa A, Nishimura I, Uetsuki T, Yamada M, Nada S, et al. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J Neurosci. 2005;25(30):7090–9.CrossRef K-i K, Hosokawa A, Nishimura I, Uetsuki T, Yamada M, Nada S, et al. Disruption of the paternal necdin gene diminishes TrkA signaling for sensory neuron survival. J Neurosci. 2005;25(30):7090–9.CrossRef
32.
go back to reference Motz BA, Alberts JR. The validity and utility of geotaxis in young rodents. Neurotoxicol Teratol. 2005;27(4):529–33.PubMedCrossRef Motz BA, Alberts JR. The validity and utility of geotaxis in young rodents. Neurotoxicol Teratol. 2005;27(4):529–33.PubMedCrossRef
33.
go back to reference Arens R, Gozal D, Omlin KJ, Livingston FR, Liu J, Keens TG, et al. Hypoxic and hypercapnic ventilatory responses in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2224–30.PubMedCrossRef Arens R, Gozal D, Omlin KJ, Livingston FR, Liu J, Keens TG, et al. Hypoxic and hypercapnic ventilatory responses in Prader-Willi syndrome. J Appl Physiol. 1994;77(5):2224–30.PubMedCrossRef
34.
go back to reference Pravdivyi I, Ballanyi K, Colmers WF, Wevrick R. Progressive postnatal decline in leptin sensitivity of arcuate hypothalamic neurons in the Magel2-null mouse model of Prader–Willi syndrome. Hum Mol Genet. 2015;24(15):4276–83.PubMedCrossRef Pravdivyi I, Ballanyi K, Colmers WF, Wevrick R. Progressive postnatal decline in leptin sensitivity of arcuate hypothalamic neurons in the Magel2-null mouse model of Prader–Willi syndrome. Hum Mol Genet. 2015;24(15):4276–83.PubMedCrossRef
35.
go back to reference Polex-Wolf J, Lam BYH, Larder R, Tadross J, Rimmington D, Bosch F, et al. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest. 2018;128(3):960–9.PubMedPubMedCentralCrossRef Polex-Wolf J, Lam BYH, Larder R, Tadross J, Rimmington D, Bosch F, et al. Hypothalamic loss of Snord116 recapitulates the hyperphagia of Prader-Willi syndrome. J Clin Invest. 2018;128(3):960–9.PubMedPubMedCentralCrossRef
36.
go back to reference Beauloye V, Dhondt K, Buysse W, Nyakasane A, Zech F, De Schepper J, et al. Evaluation of the hypothalamic-pituitary-adrenal axis and its relationship with central respiratory dysfunction in children with Prader-Willi syndrome. Orphanet J Rare Dis. 2015;10(1):106.PubMedPubMedCentralCrossRef Beauloye V, Dhondt K, Buysse W, Nyakasane A, Zech F, De Schepper J, et al. Evaluation of the hypothalamic-pituitary-adrenal axis and its relationship with central respiratory dysfunction in children with Prader-Willi syndrome. Orphanet J Rare Dis. 2015;10(1):106.PubMedPubMedCentralCrossRef
37.
go back to reference Ren J, Lee S, Pagliardini S, Gérard M, Stewart CL, Greer JJ, et al. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J Neurosci. 2003;23(5):1569–73.PubMedPubMedCentralCrossRef Ren J, Lee S, Pagliardini S, Gérard M, Stewart CL, Greer JJ, et al. Absence of Ndn, encoding the Prader-Willi syndrome-deleted gene necdin, results in congenital deficiency of central respiratory drive in neonatal mice. J Neurosci. 2003;23(5):1569–73.PubMedPubMedCentralCrossRef
38.
go back to reference Zanella S, Barthelemy M, Muscatelli F, Hilaire G. Necdin gene, respiratory disturbances and Prader-Willi syndrome. In: Poulin M, Wilson RA, editors. Integration in respiratory control. Advances in Experimental Medicine and Biology. 605: Springer New York; 2008. p. 159-64. Zanella S, Barthelemy M, Muscatelli F, Hilaire G. Necdin gene, respiratory disturbances and Prader-Willi syndrome. In: Poulin M, Wilson RA, editors. Integration in respiratory control. Advances in Experimental Medicine and Biology. 605: Springer New York; 2008. p. 159-64.
39.
go back to reference Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun. 1991;178(1):291–6.PubMedCrossRef Maruyama K, Usami M, Aizawa T, Yoshikawa K. A novel brain-specific mRNA encoding nuclear protein (necdin) expressed in neurally differentiated embryonal carcinoma cells. Biochem Biophys Res Commun. 1991;178(1):291–6.PubMedCrossRef
40.
go back to reference Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997;17(3):357–61.PubMedCrossRef Jay P, Rougeulle C, Massacrier A, Moncla A, Mattei MG, Malzac P, et al. The human necdin gene, NDN, is maternally imprinted and located in the Prader-Willi syndrome chromosomal region. Nat Genet. 1997;17(3):357–61.PubMedCrossRef
41.
go back to reference Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28(1):403–50.PubMedCrossRef Aston-Jones G, Cohen JD. An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci. 2005;28(1):403–50.PubMedCrossRef
42.
go back to reference Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia. 2012;53(s9):21–31.PubMedPubMedCentralCrossRef Vacher H, Trimmer JS. Trafficking mechanisms underlying neuronal voltage-gated ion channel localization at the axon initial segment. Epilepsia. 2012;53(s9):21–31.PubMedPubMedCentralCrossRef
43.
go back to reference Vendrame M, Maski KP, Chatterjee M, Heshmati A, Krishnamoorthy K, Tan W-H, et al. Epilepsy in Prader-Willi syndrome: clinical characteristics and correlation to genotype. Epilepsy Behav. 2010;19(3):306–10.PubMedCrossRef Vendrame M, Maski KP, Chatterjee M, Heshmati A, Krishnamoorthy K, Tan W-H, et al. Epilepsy in Prader-Willi syndrome: clinical characteristics and correlation to genotype. Epilepsy Behav. 2010;19(3):306–10.PubMedCrossRef
44.
go back to reference Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci. 2004;27(4):343–69.PubMedCrossRef Jerng HH, Pfaffinger PJ, Covarrubias M. Molecular physiology and modulation of somatodendritic A-type potassium channels. Mol Cell Neurosci. 2004;27(4):343–69.PubMedCrossRef
45.
go back to reference Gerard M, Hernandez L, Wevrick R, Stewart CL. Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet. 1999;23(2):199–202.PubMedCrossRef Gerard M, Hernandez L, Wevrick R, Stewart CL. Disruption of the mouse necdin gene results in early post-natal lethality. Nat Genet. 1999;23(2):199–202.PubMedCrossRef
46.
go back to reference Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 2013;36(3):152–62.PubMedCrossRef Smith JC, Abdala APL, Borgmann A, Rybak IA, Paton JFR. Brainstem respiratory networks: building blocks and microcircuits. Trends Neurosci. 2013;36(3):152–62.PubMedCrossRef
47.
go back to reference Beltrán-Castillo S, Morgado-Valle C, Eugenín J. The onset of the fetal respiratory rhythm: an emergent property triggered by chemosensory drive? Adv Exp Med Biol. 2017;1015:163–92.PubMedCrossRef Beltrán-Castillo S, Morgado-Valle C, Eugenín J. The onset of the fetal respiratory rhythm: an emergent property triggered by chemosensory drive? Adv Exp Med Biol. 2017;1015:163–92.PubMedCrossRef
48.
go back to reference Schwarz Lindsay A, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25(21):R1051–6.PubMedCrossRef Schwarz Lindsay A, Luo L. Organization of the locus coeruleus-norepinephrine system. Curr Biol. 2015;25(21):R1051–6.PubMedCrossRef
49.
go back to reference Sara Susan J, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130–41.PubMedCrossRef Sara Susan J, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76(1):130–41.PubMedCrossRef
50.
go back to reference Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, et al. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry. 2018;83(3):254–62.PubMedCrossRef Naegeli C, Zeffiro T, Piccirelli M, Jaillard A, Weilenmann A, Hassanpour K, et al. Locus coeruleus activity mediates hyperresponsiveness in posttraumatic stress disorder. Biol Psychiatry. 2018;83(3):254–62.PubMedCrossRef
51.
go back to reference Bisson JI, Cosgrove S, Lewis C, Roberts NP. Post-traumatic stress disorder. BMJ. 2015;351. Bisson JI, Cosgrove S, Lewis C, Roberts NP. Post-traumatic stress disorder. BMJ. 2015;351.
Metadata
Title
Firing activity of locus coeruleus noradrenergic neurons decreases in necdin-deficient mice, an animal model of Prader–Willi syndrome
Authors
Rui-Ni Wu
Wei-Chen Hung
Ching-Tsuey Chen
Li-Ping Tsai
Wen-Sung Lai
Ming-Yuan Min
Shi-Bing Wong
Publication date
01-12-2020
Publisher
BioMed Central
Published in
Journal of Neurodevelopmental Disorders / Issue 1/2020
Print ISSN: 1866-1947
Electronic ISSN: 1866-1955
DOI
https://doi.org/10.1186/s11689-020-09323-4

Other articles of this Issue 1/2020

Journal of Neurodevelopmental Disorders 1/2020 Go to the issue