Skip to main content
Top
Published in: Orphanet Journal of Rare Diseases 2/2012

Open Access 01-11-2012 | Meeting abstract

Finding new medicines to fight CF: multiple steps of a success story

Author: Margarida D Amaral

Published in: Orphanet Journal of Rare Diseases | Special Issue 2/2012

Login to get access

Excerpt

Cystic fibrosis (CF) is a major life-limiting genetic disease leading to severe respiratory symptoms caused by mutations in CF trans membrane conductance regulator (CFTR), a chloride channel expressed at the apical membrane of epithelial cells. Absence of functional CFTR from the surface of respiratory cells reduces mucociliary clearance, promoting airways obstruction, chronic infection and ultimately lung failure [1]. Despite major clinical advances treating the symptoms, which pushed survival beyond the second decade (~25 years in Europe), CF is still a life-limiting condition [2]. However, to further increase CF patients life expectancy, CF needs to be treated beyond its symptoms, i.e., through treatments addressing the basic defect associated with CFTR gene mutations [3]. So far ~1,900 CFTR mutations were reported [4], but one single mutation, F508del remains the most common one, as it occurs in ~90% of CF patients in at least one allele [5] and is associated with a severe clinical phenotype. Despite that most of efforts are focused on correcting the F508del-CFTR which causes intracellular retention of the mutant channel at the endoplasmic reticulum (ER), several additional strategies are emerging to rescue other (rarer mutants) which, in some populations, also have high prevalence. To this end, CFTR mutations are usually grouped into functional classes, towards a "mutation-specific" therapeutic approach by which mutations within the same functional class can be corrected by the same therapeutic strategy towards a "personalized medicine" approach [6]. …
Literature
1.
go back to reference Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR: Cystic Fibrosis. The Metabolic Basis of Inherited Disease 8th edition. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill; 2001:5121-5188. Welsh MJ, Ramsey BW, Accurso FJ, Cutting GR: Cystic Fibrosis. The Metabolic Basis of Inherited Disease 8th edition. Edited by: Scriver CR, Beaudet AL, Sly WS, Valle D. New York: McGraw-Hill; 2001:5121-5188.
2.
go back to reference De Boeck K, Wilschanski M, Castellani C, Taylor C, Cuppens H, Dodge J, Sinaasappel M: Cystic fibrosis: terminology and diagnostic algorithms. Thorax. 2006, 61: 627-635. 10.1136/thx.2005.043539.PubMedCentralCrossRefPubMed De Boeck K, Wilschanski M, Castellani C, Taylor C, Cuppens H, Dodge J, Sinaasappel M: Cystic fibrosis: terminology and diagnostic algorithms. Thorax. 2006, 61: 627-635. 10.1136/thx.2005.043539.PubMedCentralCrossRefPubMed
3.
go back to reference Amaral MD: Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Curr Drug Targets. 2011, 12: 683-693. 10.2174/138945011795378586.CrossRefPubMed Amaral MD: Targeting CFTR: how to treat cystic fibrosis by CFTR-repairing therapies. Curr Drug Targets. 2011, 12: 683-693. 10.2174/138945011795378586.CrossRefPubMed
5.
go back to reference Collins FS: Cystic fibrosis: molecular biology and therapeutic implications. Science. 1992, 256: 774-779. 10.1126/science.1375392.CrossRefPubMed Collins FS: Cystic fibrosis: molecular biology and therapeutic implications. Science. 1992, 256: 774-779. 10.1126/science.1375392.CrossRefPubMed
6.
go back to reference Amaral MD, Kunzelmann K: Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci. 2007, 28: 334-341. 10.1016/j.tips.2007.05.004.CrossRefPubMed Amaral MD, Kunzelmann K: Molecular targeting of CFTR as a therapeutic approach to cystic fibrosis. Trends Pharmacol Sci. 2007, 28: 334-341. 10.1016/j.tips.2007.05.004.CrossRefPubMed
7.
go back to reference Welsh MJ, Smith AE: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993, 73: 1251-1254. 10.1016/0092-8674(93)90353-R.CrossRefPubMed Welsh MJ, Smith AE: Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell. 1993, 73: 1251-1254. 10.1016/0092-8674(93)90353-R.CrossRefPubMed
8.
go back to reference Zielenski J, Tsui LC: Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995, 29: 777-807. 10.1146/annurev.ge.29.120195.004021.CrossRefPubMed Zielenski J, Tsui LC: Cystic fibrosis: genotypic and phenotypic variations. Annu Rev Genet. 1995, 29: 777-807. 10.1146/annurev.ge.29.120195.004021.CrossRefPubMed
9.
go back to reference Ramalho AS, Lewandowska MA, Farinha CM, Mendes F, Goncalves J, Barreto C, Harris A, Amaral MD: Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem. 2009, 24: 335-346. 10.1159/000257426.PubMedCentralCrossRefPubMed Ramalho AS, Lewandowska MA, Farinha CM, Mendes F, Goncalves J, Barreto C, Harris A, Amaral MD: Deletion of CFTR translation start site reveals functional isoforms of the protein in CF patients. Cell Physiol Biochem. 2009, 24: 335-346. 10.1159/000257426.PubMedCentralCrossRefPubMed
Metadata
Title
Finding new medicines to fight CF: multiple steps of a success story
Author
Margarida D Amaral
Publication date
01-11-2012
Publisher
BioMed Central
Published in
Orphanet Journal of Rare Diseases / Issue Special Issue 2/2012
Electronic ISSN: 1750-1172
DOI
https://doi.org/10.1186/1750-1172-7-S2-A19

Other articles of this Special Issue 2/2012

Orphanet Journal of Rare Diseases 2/2012 Go to the issue