Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

Open Access 01-12-2021 | Fertility | Research article

Effects of a new thyrotropic drug isolated from Potentilla alba on the male reproductive system of rats and offspring development

Authors: Lubov V. Krepkova, Valentina V. Bortnikova, Aleksandra N. Babenko, Praskovya G. Mizina, Vladimir A. Mkhitarov, Kathleen M. Job, Catherine M. Sherwin, Elena Y. Enioutina

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

The dysfunction of the thyroid gland is a common medical condition. Nowadays, patients frequently use medicinal herbs as complementary or alternative options to conventional drug treatments. These patients may benefit from treatment of thyroid dysfunctions with Potentilla alba L. preparations. While it has been reported that Potentilla alba preparations have low toxicity, nothing is known about their ability to affect reproductive functions in patients of childbearing age.

Methods

Male Wistar rats were orally treated with a thyrotrophic botanical drug, standardized Potentilla alba Dry Extract (PADE), at doses 8 and 40 times higher than the median therapeutic dose recommended for the clinical trials, for 60 consecutive days. Male Wistar rats receiving water (H2O) were used as controls. After completing treatment, half of the PADE-treated and control males were used to determine PADE gonadotoxicity, and the remaining half of PADE-treated and control males were mated with intact females. Two female rats were housed with one male for two estrus cycles. PADE effects on fertility and fetal/offspring development were evaluated.

Results

Herein, we report that oral treatment of male Wistar rats with PADE before mating with intact females instigated marked effects on male reproductive organs. Treatment significantly decreased the motility of the sperm and increased the number of pathological forms of spermatozoa. Additionally, a dose-dependent effect on Leydig cells was observed. However, these PADE effects did not significantly affect male fertility nor fetal and offspring development when PADE-treated males were mated with intact females.

Conclusions

PADE treatment of male rates negatively affected sperm and testicular Leydig cell morphology. However, these changes did not affect male fertility and offspring development. It is currently not known whether PADE treatment may affect human male fertility and offspring development. Therefore, these results from an animal study need to be confirmed in humans. Results from this animal study can be used to model the exposure-response relationship and adverse outcomes in humans.
Literature
1.
go back to reference King R, Ajjan RA. Treatment Modalities in Thyroid Dysfunction. Treatment Modalities in Thyroid Dysfunction, Thyroid and Parathyroid Diseases - New Insights into Some Old and Some New Issues; 2012. King R, Ajjan RA. Treatment Modalities in Thyroid Dysfunction. Treatment Modalities in Thyroid Dysfunction, Thyroid and Parathyroid Diseases - New Insights into Some Old and Some New Issues; 2012.
2.
go back to reference Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390:1550–62.CrossRef Chaker L, Bianco AC, Jonklaas J, Peeters RP. Hypothyroidism. Lancet. 2017;390:1550–62.CrossRef
3.
go back to reference Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14:301–16.CrossRef Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, Okosieme OE. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14:301–16.CrossRef
4.
go back to reference Gupta A, Wamankar S, Gidwani B, Kaur CD. Herbal drugs for thyroid treatment. Int J Pharm Biol Sci. 2016;6:62–70. Gupta A, Wamankar S, Gidwani B, Kaur CD. Herbal drugs for thyroid treatment. Int J Pharm Biol Sci. 2016;6:62–70.
5.
go back to reference Kaminskii AV, Kiseleva IA, Teplaia EV. Clinical application of Potentilla alba for prevention and treatment of thyroid gland pathologies. Lik Sprava. 2013;8:99–108. Kaminskii AV, Kiseleva IA, Teplaia EV. Clinical application of Potentilla alba for prevention and treatment of thyroid gland pathologies. Lik Sprava. 2013;8:99–108.
6.
go back to reference Kaminskii AV, Kiseleva IA, Teplaya EV. Clinical potential use of white cinquefoil for prophylaxis and treatment of thyroid gland pathology. Continued Medical Education for Physicians. Endokrinologiya: news, opinions and education. 2014;1:68–75. Kaminskii AV, Kiseleva IA, Teplaya EV. Clinical potential use of white cinquefoil for prophylaxis and treatment of thyroid gland pathology. Continued Medical Education for Physicians. Endokrinologiya: news, opinions and education. 2014;1:68–75.
7.
go back to reference Arhipova EV, Shantanova LN, Mondodoev AG. Thyrotropic effects of Potentilla alba L. Vestnik Boryatskogo State Iniversity; 2014. p. 118–22. Arhipova EV, Shantanova LN, Mondodoev AG. Thyrotropic effects of Potentilla alba L. Vestnik Boryatskogo State Iniversity; 2014. p. 118–22.
8.
go back to reference Tomczyk M, Latte KP. Potentilla--a review of its phytochemical and pharmacological profile. J Ethnopharmacol. 2009;122:184–204.CrossRef Tomczyk M, Latte KP. Potentilla--a review of its phytochemical and pharmacological profile. J Ethnopharmacol. 2009;122:184–204.CrossRef
9.
go back to reference Shikov AN, Lazukina MA, Pozharitskaya ON, Makarova MN, Golubeva OV, Makarov VG, Djachuk GI. Pharmacological evaluation of Potentilla alba L. in mice: adaptogenic and central nervous system effects. Pharm Biol. 2011;49:1023–8.CrossRef Shikov AN, Lazukina MA, Pozharitskaya ON, Makarova MN, Golubeva OV, Makarov VG, Djachuk GI. Pharmacological evaluation of Potentilla alba L. in mice: adaptogenic and central nervous system effects. Pharm Biol. 2011;49:1023–8.CrossRef
11.
go back to reference Bogacheva NG, Meshkov AI, Konyaeva EA, Alent’eva OG. Pharmacognostic study of the rhizomes and the roots of Potentilla alba L. J Quest Biol Med Pharm Chem. 2016;19(1):28–32. Bogacheva NG, Meshkov AI, Konyaeva EA, Alent’eva OG. Pharmacognostic study of the rhizomes and the roots of Potentilla alba L. J Quest Biol Med Pharm Chem. 2016;19(1):28–32.
12.
go back to reference Damien Dorman HJ, Shikov AN, Pozharitskaya ON, Hiltunen R. Antioxidant and pro-oxidant evaluation of a Potentilla alba L. rhizome extract. Chem Biodivers. 2011;8:1344–56.CrossRef Damien Dorman HJ, Shikov AN, Pozharitskaya ON, Hiltunen R. Antioxidant and pro-oxidant evaluation of a Potentilla alba L. rhizome extract. Chem Biodivers. 2011;8:1344–56.CrossRef
13.
go back to reference Polyakov NA, Khazin FM, Meshkov AI, Korotkikh IN, Osipov VI. Composition and content of proanthocyanidins in the roots and rhizomes of the white cinquefoil (Potentilla alba L.). In: Materials of the International Symposium “Phenolic Compounds: Fundamental and Applied Aspects”, 14–19 May, 2018. Moscow, Russia: IFR RAS; 2018. p. 347–53. Polyakov NA, Khazin FM, Meshkov AI, Korotkikh IN, Osipov VI. Composition and content of proanthocyanidins in the roots and rhizomes of the white cinquefoil (Potentilla alba L.). In: Materials of the International Symposium “Phenolic Compounds: Fundamental and Applied Aspects”, 14–19 May, 2018. Moscow, Russia: IFR RAS; 2018. p. 347–53.
14.
go back to reference Burova AE, Meshkov AI, Saybel OL. Development of methods for the qualitative and quantitative determination of phenolic compounds in the dry extract of white cinquefoil (Potentilla alba L.). In: Samilina IA, Luferov AN, editors. Modern aspects of the use of plant materials and raw materials of natural origin in medicine: Materials of the V scientific-practical conference; Moscow. Sechenov MFMU: Institute of pharmacy and translational medicine, First I.M; 2017. p. 59–62. Burova AE, Meshkov AI, Saybel OL. Development of methods for the qualitative and quantitative determination of phenolic compounds in the dry extract of white cinquefoil (Potentilla alba L.). In: Samilina IA, Luferov AN, editors. Modern aspects of the use of plant materials and raw materials of natural origin in medicine: Materials of the V scientific-practical conference; Moscow. Sechenov MFMU: Institute of pharmacy and translational medicine, First I.M; 2017. p. 59–62.
15.
go back to reference Mironov AN. Guidelines for preclinical studies of drugs. Part 1. Moscow: Grif and K; 2012. Mironov AN. Guidelines for preclinical studies of drugs. Part 1. Moscow: Grif and K; 2012.
16.
go back to reference Mironov AN. Guidelines for conducting preclinical studies of drugs. Part 1. Moscow, Russia: Grif and K; 2012. Mironov AN. Guidelines for conducting preclinical studies of drugs. Part 1. Moscow, Russia: Grif and K; 2012.
17.
go back to reference Ukhov UI, Astrakhancev AF. Morphometric methods of assessment of the functional state of the testes. Arch Anat Histol Embryol. 1983;84:66–72. Ukhov UI, Astrakhancev AF. Morphometric methods of assessment of the functional state of the testes. Arch Anat Histol Embryol. 1983;84:66–72.
18.
go back to reference Chauhan A, Agarwal M, Kushwaha S, Mutreja A. Antifertility studies of Aegle marmelos Corr., an Indian medicinal plant on male albino rats. Egypt J Biol. 2008;10:28–35. Chauhan A, Agarwal M, Kushwaha S, Mutreja A. Antifertility studies of Aegle marmelos Corr., an Indian medicinal plant on male albino rats. Egypt J Biol. 2008;10:28–35.
19.
go back to reference Jahan S, Saeed N, Ijlal F, Khan MA, Ahmad M, Zafar M. Histomorphological study to evaluate anti-fertility effect of Abrus precatorius L. in adult male mice. J Med Plants Res. 2009;3:1021–8. Jahan S, Saeed N, Ijlal F, Khan MA, Ahmad M, Zafar M. Histomorphological study to evaluate anti-fertility effect of Abrus precatorius L. in adult male mice. J Med Plants Res. 2009;3:1021–8.
20.
go back to reference Singh N, Singh SK. Aqueous fruit extract of Mimusops elengi causes reversible suppression of spermatogenesis and fertility in male mice. Andrologia. 2016;48:807–16.CrossRef Singh N, Singh SK. Aqueous fruit extract of Mimusops elengi causes reversible suppression of spermatogenesis and fertility in male mice. Andrologia. 2016;48:807–16.CrossRef
21.
go back to reference Ashok P, Meenakshi B. Contraceptive effect of Curcuma longa (L.) in male albino rat. Asian J Androl. 2004;6:71–4.PubMed Ashok P, Meenakshi B. Contraceptive effect of Curcuma longa (L.) in male albino rat. Asian J Androl. 2004;6:71–4.PubMed
22.
go back to reference Goyal S, Manivannan B, Ansari AS, Jain SC, Lohiya NK. Safety evaluation of long term oral treatment of methanol sub-fraction of the seeds of Carica papaya as a male contraceptive in albino rats. J Ethnopharmacol. 2010;127:286–91.CrossRef Goyal S, Manivannan B, Ansari AS, Jain SC, Lohiya NK. Safety evaluation of long term oral treatment of methanol sub-fraction of the seeds of Carica papaya as a male contraceptive in albino rats. J Ethnopharmacol. 2010;127:286–91.CrossRef
23.
go back to reference Hammami I, Amara S, Benahmed M, El May MV, Mauduit C. Chronic crude garlic-feeding modified adult male rat testicular markers: mechanisms of action. Reprod Biol Endocrinol. 2009;7:65.CrossRef Hammami I, Amara S, Benahmed M, El May MV, Mauduit C. Chronic crude garlic-feeding modified adult male rat testicular markers: mechanisms of action. Reprod Biol Endocrinol. 2009;7:65.CrossRef
24.
go back to reference Dhanapal R, Ratna JV, Gupta M, Sarathchandran I. Preliminary study on antifertility activity of Enicostemma axillare leaves and Urena lobata root used in Indian traditional folk medicine. Asian Pac J Trop Med. 2012;5:616–22.CrossRef Dhanapal R, Ratna JV, Gupta M, Sarathchandran I. Preliminary study on antifertility activity of Enicostemma axillare leaves and Urena lobata root used in Indian traditional folk medicine. Asian Pac J Trop Med. 2012;5:616–22.CrossRef
25.
go back to reference Mehraban Z, Ghaffari Novin M, Golmohammadi MG, Sagha M, Ziai SA, Abdollahifar MA, Nazarian H. Protective effect of Gallic acid on testicular tissue, sperm parameters, and DNA fragmentation against toxicity induced by cyclophosphamide in adult NMRI mice. Urol J. 2020;17:78–85.PubMed Mehraban Z, Ghaffari Novin M, Golmohammadi MG, Sagha M, Ziai SA, Abdollahifar MA, Nazarian H. Protective effect of Gallic acid on testicular tissue, sperm parameters, and DNA fragmentation against toxicity induced by cyclophosphamide in adult NMRI mice. Urol J. 2020;17:78–85.PubMed
26.
go back to reference Roychoudhury S, Agarwal A, Virk G, Cho C-L. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod BioMed Online. 2017;34:487–98.CrossRef Roychoudhury S, Agarwal A, Virk G, Cho C-L. Potential role of green tea catechins in the management of oxidative stress-associated infertility. Reprod BioMed Online. 2017;34:487–98.CrossRef
27.
go back to reference Rahman SU, Huang Y, Zhu L, Feng S, Khan IM, Wu J, Li Y, Wang X. Therapeutic role of green tea polyphenols in improving fertility: a review. Nutrients. 2018;10:834.CrossRef Rahman SU, Huang Y, Zhu L, Feng S, Khan IM, Wu J, Li Y, Wang X. Therapeutic role of green tea polyphenols in improving fertility: a review. Nutrients. 2018;10:834.CrossRef
28.
go back to reference Malini T, Vanithakumari G. Antifertility effects of beta-sitosterol in male albino rats. J Ethnopharmacol. 1991;35:149–53.CrossRef Malini T, Vanithakumari G. Antifertility effects of beta-sitosterol in male albino rats. J Ethnopharmacol. 1991;35:149–53.CrossRef
29.
go back to reference Qasimi MI, Mohibbi H, Nagaoka K, Watanabe G. Effects of Phytosterols as food additives on adrenal and reproductive endocrine function during sexual maturation in male Japanese quail (Coturnix coturnix japonica). J Poult Sci. 2018;55:155–61.CrossRef Qasimi MI, Mohibbi H, Nagaoka K, Watanabe G. Effects of Phytosterols as food additives on adrenal and reproductive endocrine function during sexual maturation in male Japanese quail (Coturnix coturnix japonica). J Poult Sci. 2018;55:155–61.CrossRef
30.
go back to reference Singh K, Gupta R. Antifertility activity of β-sitosterol isolated from Barleria prionitis (L.) roots in male albino rats. Int J Pharm Pharm Sci. 2016;8:88–96.CrossRef Singh K, Gupta R. Antifertility activity of β-sitosterol isolated from Barleria prionitis (L.) roots in male albino rats. Int J Pharm Pharm Sci. 2016;8:88–96.CrossRef
31.
go back to reference Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51.CrossRef Vanderpump MPJ. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51.CrossRef
32.
go back to reference Rayburn ER, Gao L, Ding J, Ding H, Shao J, Li H. FDA-approved drugs that are spermatotoxic in animals and the utility of animal testing for human risk prediction. J Assist Reprod Genet. 2018;35:191–212.CrossRef Rayburn ER, Gao L, Ding J, Ding H, Shao J, Li H. FDA-approved drugs that are spermatotoxic in animals and the utility of animal testing for human risk prediction. J Assist Reprod Genet. 2018;35:191–212.CrossRef
Metadata
Title
Effects of a new thyrotropic drug isolated from Potentilla alba on the male reproductive system of rats and offspring development
Authors
Lubov V. Krepkova
Valentina V. Bortnikova
Aleksandra N. Babenko
Praskovya G. Mizina
Vladimir A. Mkhitarov
Kathleen M. Job
Catherine M. Sherwin
Elena Y. Enioutina
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Fertility
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-020-03184-z

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue