Skip to main content
Top
Published in: BMC Complementary Medicine and Therapies 1/2021

01-12-2021 | Fatty Liver | Research article

Yellow loosestrife (Lysimachia vulgaris var. davurica) ameliorates liver fibrosis in db/db mice with methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis

Authors: Yang-Ju Son, Da Seul Jung, Ji Min Shin, Myungsuk Kim, Gyhye Yoo, Chu Won Nho

Published in: BMC Complementary Medicine and Therapies | Issue 1/2021

Login to get access

Abstract

Background

Nonalcoholic steatohepatitis (NASH), a liver disease caused by a nonalcoholic fatty liver, is increasing in incidence worldwide. Owing to the complexity of its pathogenic mechanisms, there are no therapeutic agents for this disease yet. The ideal drug for NASH needs to concurrently decrease hepatic lipid accumulation and exert anti-inflammatory, antifibrotic, and antioxidative effects in the liver. Because of their multipurpose therapeutic effects, we considered that medicinal herbs are suitable for treating patients with NASH.

Methods

We determined the efficacy of the alcoholic extract of Lysimachia vulgaris var. davurica (LV), an edible medicinal herb, for NASH treatment. For inducing NASH, C57BLKS/J lar-Leprdb/Leprdb (db/db) male mice were fed with a methionine-choline deficient (MCD) diet ad libitum. After 3 weeks, the LV extract and a positive control (GFT505) were administered to mice by oral gavage for 3 weeks with a continued MCD diet as needed.

Results

In mice with diet-induced NASH, the LV extract could relieve the disease symptoms; that is, the extract ameliorated hepatic lipid accumulation and also showed antioxidative and anti-inflammatory effects. The LV extract also activated nuclear factor E2-related factor 2 (Nrf2) expression, leading to the upregulation of antioxidants and detoxification signaling. Moreover, the extract presented remarkable efficacy in alleviating liver fibrosis compared with GFT505. This difference was caused by significant LV extract-mediated reduction in the mRNA expression of fibrotic genes like the alpha-smooth muscle actin and collagen type 3 alpha 1. Reduction of fibrotic genes may thus relate with the downregulation of transforming growth factor beta (TGFβ)/Smad signaling by LV extract administration.

Conclusions

Lipid accumulation and inflammatory responses in the liver were alleviated by feeding LV extract to NASH-induced mice. Moreover, the LV extract strongly prevented liver fibrosis by blocking TGFβ/Smad signaling. Hence, LV showed sufficient potency for use as a therapeutic agent against NASH.
Appendix
Available only for authorised users
Literature
2.
go back to reference Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastoenterology. 1999;116:1413–9.CrossRef Matteoni CA, Younossi ZM, Gramlich T, Boparai N, Liu YC, McCullough AJ. Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastoenterology. 1999;116:1413–9.CrossRef
5.
go back to reference Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99–112.PubMedCrossRef Farrell GC, Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology. 2006;43:S99–112.PubMedCrossRef
6.
go back to reference Kleiner DE, Brunt EM, van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.PubMedCrossRef Kleiner DE, Brunt EM, van Natta M, Behling C, Contos MJ, Cummings OW, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology. 2005;41:1313–21.PubMedCrossRef
7.
go back to reference Ratziu V, Goodman Z, Sanyal A. Current efforts and trends in the treatment of NASH. J Hepatol. 2015;62:S65–75.PubMedCrossRef Ratziu V, Goodman Z, Sanyal A. Current efforts and trends in the treatment of NASH. J Hepatol. 2015;62:S65–75.PubMedCrossRef
8.
go back to reference Dunn W. Therapies for non-alcoholic steatohepatitis. Liver Res. 2017;1:214–20.CrossRef Dunn W. Therapies for non-alcoholic steatohepatitis. Liver Res. 2017;1:214–20.CrossRef
9.
10.
go back to reference Kinghorn AD. Pharmacognosy in the 21st century. J Pharm Pharmacol. 2001;53:135–48.CrossRef Kinghorn AD. Pharmacognosy in the 21st century. J Pharm Pharmacol. 2001;53:135–48.CrossRef
11.
go back to reference Turker A, Guner B. Efficient plant regeneration of yellow loosestrife (Lysimachia vulgaris L.), a medicinal plant. Acta Biol Hung. 2013;64:218–30.PubMedCrossRef Turker A, Guner B. Efficient plant regeneration of yellow loosestrife (Lysimachia vulgaris L.), a medicinal plant. Acta Biol Hung. 2013;64:218–30.PubMedCrossRef
12.
go back to reference Yildrim AB, Guner B, Karakas FP, Turker AU. Evaluation of antibacterial, antitumor, antioxidant activities and phenolic constituents of field-grown and in vitro-grown Lysimachia vulgaris L. Afr J Tradit Complement Altern Med. 2017;14:177–87.CrossRef Yildrim AB, Guner B, Karakas FP, Turker AU. Evaluation of antibacterial, antitumor, antioxidant activities and phenolic constituents of field-grown and in vitro-grown Lysimachia vulgaris L. Afr J Tradit Complement Altern Med. 2017;14:177–87.CrossRef
13.
go back to reference Podolak I, Elas M, Cieszka K. In vitro antifungal and cytotoxic activity of triterpene saponosides and quinoid pigments from Lysimachia vulgaris L. Phytother Res. 1998;12:S70–3.CrossRef Podolak I, Elas M, Cieszka K. In vitro antifungal and cytotoxic activity of triterpene saponosides and quinoid pigments from Lysimachia vulgaris L. Phytother Res. 1998;12:S70–3.CrossRef
14.
go back to reference Lee SA. Traditional Functional Foods in Korea. In: Shi J, Ho C-T, Shahidi F, editors. Asian Functional Foods. USA: CRC Press; 1980. p. 175. Lee SA. Traditional Functional Foods in Korea. In: Shi J, Ho C-T, Shahidi F, editors. Asian Functional Foods. USA: CRC Press; 1980. p. 175.
15.
go back to reference Kim SY, Lee JY, Jhin C, Shin JM, Kim M, Ahn HR, et al. Reduction of hepatic lipogenesis by loliolide and pinoresinol from Lysimachia vulgaris via degrading liver X receptors. J Agric Food Chem. 2019;67:12419–27.PubMedCrossRef Kim SY, Lee JY, Jhin C, Shin JM, Kim M, Ahn HR, et al. Reduction of hepatic lipogenesis by loliolide and pinoresinol from Lysimachia vulgaris via degrading liver X receptors. J Agric Food Chem. 2019;67:12419–27.PubMedCrossRef
16.
go back to reference Wang JM, Cai H, Li JH, Chen RX, Zhang YY, Li JY, et al. Detoxication mechanisms of Radix Tripterygium wilfordii via compatibility with Herba Lysimachia christinae in S180-bearing mice by involving Nrf2. Biosci Rep. 2018;38:BSR20180429.PubMedPubMedCentralCrossRef Wang JM, Cai H, Li JH, Chen RX, Zhang YY, Li JY, et al. Detoxication mechanisms of Radix Tripterygium wilfordii via compatibility with Herba Lysimachia christinae in S180-bearing mice by involving Nrf2. Biosci Rep. 2018;38:BSR20180429.PubMedPubMedCentralCrossRef
17.
go back to reference Wang J, Zhang Y, Zhang Y, Cui Y, Liu J, Zhang B. Protective effect of Lysimachia christinae against acute alcohol-induced liver injury in mice. Biosci Trends. 2012;6:89–97.PubMed Wang J, Zhang Y, Zhang Y, Cui Y, Liu J, Zhang B. Protective effect of Lysimachia christinae against acute alcohol-induced liver injury in mice. Biosci Trends. 2012;6:89–97.PubMed
18.
go back to reference Toth A, Toth G, Kery A. Polyphenol composition and antioxidant capacity of three Lysimachia species. Nat Prod Commun. 2014;9:1473–8.PubMed Toth A, Toth G, Kery A. Polyphenol composition and antioxidant capacity of three Lysimachia species. Nat Prod Commun. 2014;9:1473–8.PubMed
19.
go back to reference Rinella ME, Elias MS, Smolak RR, Fu T, Borensztajn J, Green RM. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline=deficient diet. J Lipid Res. 2008;49:1068–76.PubMedPubMedCentralCrossRef Rinella ME, Elias MS, Smolak RR, Fu T, Borensztajn J, Green RM. Mechanisms of hepatic steatosis in mice fed a lipogenic methionine choline=deficient diet. J Lipid Res. 2008;49:1068–76.PubMedPubMedCentralCrossRef
20.
go back to reference Sahai A, Malladi P, Pan X, Paul R, Melin-Aldana H, Green RM, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol- Gastr L. 2004;287:G1035–43.CrossRef Sahai A, Malladi P, Pan X, Paul R, Melin-Aldana H, Green RM, et al. Obese and diabetic db/db mice develop marked liver fibrosis in a model of nonalcoholic steatohepatitis: role of short-form leptin receptors and osteopontin. Am J Physiol- Gastr L. 2004;287:G1035–43.CrossRef
21.
go back to reference Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprod Nutr Dev. 1996;36:375–89.PubMedCrossRef Gruffat D, Durand D, Graulet B, Bauchart D. Regulation of VLDL synthesis and secretion in the liver. Reprod Nutr Dev. 1996;36:375–89.PubMedCrossRef
22.
go back to reference Machado MV, Michelotti GA, Xie G, de Almeida TP, Boursier J, Bohnic B, et al. Correction: mouse models of diet-induced nonalcoholic Steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 2015;10:e0132315.PubMedPubMedCentralCrossRef Machado MV, Michelotti GA, Xie G, de Almeida TP, Boursier J, Bohnic B, et al. Correction: mouse models of diet-induced nonalcoholic Steatohepatitis reproduce the heterogeneity of the human disease. PLoS One. 2015;10:e0132315.PubMedPubMedCentralCrossRef
23.
go back to reference Larter CZ, Yeh MM. Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol. 2008;23:1635–48.PubMedCrossRef Larter CZ, Yeh MM. Animal models of NASH: getting both pathology and metabolic context right. J Gastroenterol Hepatol. 2008;23:1635–48.PubMedCrossRef
24.
go back to reference Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care. 2011;34:2008–14.PubMedPubMedCentralCrossRef Cariou B, Zair Y, Staels B, Bruckert E. Effects of the new dual PPAR alpha/delta agonist GFT505 on lipid and glucose homeostasis in abdominally obese patients with combined dyslipidemia or impaired glucose metabolism. Diabetes Care. 2011;34:2008–14.PubMedPubMedCentralCrossRef
25.
go back to reference Poulsen L, Siersbaek M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23:631–9.PubMedCrossRef Poulsen L, Siersbaek M, Mandrup S. PPARs: fatty acid sensors controlling metabolism. Semin Cell Dev Biol. 2012;23:631–9.PubMedCrossRef
26.
go back to reference Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.PubMedPubMedCentralCrossRef Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem. 2009;284:13291–5.PubMedPubMedCentralCrossRef
27.
go back to reference Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.PubMedCrossRef Itoh K, Chiba T, Takahashi S, Ishii T, Igarashi K, Katoh Y, et al. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem Biophys Res Commun. 1997;236:313–22.PubMedCrossRef
28.
go back to reference Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.PubMedCrossRef Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism. Trends Mol Med. 2004;10:549–57.PubMedCrossRef
29.
go back to reference Loboda A, Damulewicz M, Pyza E, Al J, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.PubMedPubMedCentralCrossRef Loboda A, Damulewicz M, Pyza E, Al J, Dulak J. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell Mol Life Sci. 2016;73:3221–47.PubMedPubMedCentralCrossRef
30.
go back to reference Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal. 2005;7:1664–73.PubMedCrossRef Kang KW, Lee SJ, Kim SG. Molecular mechanism of nrf2 activation by oxidative stress. Antioxid Redox Signal. 2005;7:1664–73.PubMedCrossRef
31.
go back to reference Wu KC, Liu J, Klaassen CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol. 2012;262:321–9.PubMedCrossRef Wu KC, Liu J, Klaassen CD. Role of Nrf2 in preventing ethanol-induced oxidative stress and lipid accumulation. Toxicol Appl Pharmacol. 2012;262:321–9.PubMedCrossRef
33.
go back to reference Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.PubMedCrossRef Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol Rev. 2008;88:125–72.PubMedCrossRef
34.
go back to reference Lua I, Li Y, Zagory JA, Wang KS, French SW, Sévigny J, Asahina K. Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 2016;64:1137–46.PubMedPubMedCentralCrossRef Lua I, Li Y, Zagory JA, Wang KS, French SW, Sévigny J, Asahina K. Characterization of hepatic stellate cells, portal fibroblasts, and mesothelial cells in normal and fibrotic livers. J Hepatol. 2016;64:1137–46.PubMedPubMedCentralCrossRef
35.
go back to reference Carpino G, Morini S, Corradini SG, Franchitto A, Merli M, Siciliano M, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis. 2005;37:349–56.PubMedCrossRef Carpino G, Morini S, Corradini SG, Franchitto A, Merli M, Siciliano M, et al. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Dig Liver Dis. 2005;37:349–56.PubMedCrossRef
36.
go back to reference Cherng S, Young J, Ma H. Alpha-smooth muscle actin (α-SMA). J Am Sci. 2008;4:7–9. Cherng S, Young J, Ma H. Alpha-smooth muscle actin (α-SMA). J Am Sci. 2008;4:7–9.
37.
go back to reference Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, et al. Tumour necrosis factor a signaling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.PubMedPubMedCentralCrossRef Tomita K, Tamiya G, Ando S, Ohsumi K, Chiyo T, Mizutani A, et al. Tumour necrosis factor a signaling through activation of Kupffer cells plays an essential role in liver fibrosis of non-alcoholic steatohepatitis in mice. Gut. 2006;55:415–24.PubMedPubMedCentralCrossRef
38.
go back to reference Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Investig. 2010;90:1805–6.PubMedCrossRef Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, et al. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Lab Investig. 2010;90:1805–6.PubMedCrossRef
39.
go back to reference Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterol. 2009;137:713–23.CrossRef Wang J, Leclercq I, Brymora JM, Xu N, Ramezani-Moghadam M, London RM. Kupffer cells mediate leptin-induced liver fibrosis. Gastroenterol. 2009;137:713–23.CrossRef
40.
go back to reference Tang LX, He RH, Yang G, Tan JJ, Li Z, Meng XM, et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad Signaling in vivo and in vitro. PLoS One. 2012;7:e31350.PubMedPubMedCentralCrossRef Tang LX, He RH, Yang G, Tan JJ, Li Z, Meng XM, et al. Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad Signaling in vivo and in vitro. PLoS One. 2012;7:e31350.PubMedPubMedCentralCrossRef
44.
go back to reference Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al. Matrix metalloproteinase 2 activation of transforming growth factor-β1 (TGF-β1) and TGF-β1-type II receptor signaling within the aged arterial wall. Arterioscl Throm Vas. 2006;26:1503–9.CrossRef Wang M, Zhao D, Spinetti G, Zhang J, Jiang LQ, Pintus G, et al. Matrix metalloproteinase 2 activation of transforming growth factor-β1 (TGF-β1) and TGF-β1-type II receptor signaling within the aged arterial wall. Arterioscl Throm Vas. 2006;26:1503–9.CrossRef
Metadata
Title
Yellow loosestrife (Lysimachia vulgaris var. davurica) ameliorates liver fibrosis in db/db mice with methionine- and choline-deficient diet-induced nonalcoholic steatohepatitis
Authors
Yang-Ju Son
Da Seul Jung
Ji Min Shin
Myungsuk Kim
Gyhye Yoo
Chu Won Nho
Publication date
01-12-2021
Publisher
BioMed Central
Keyword
Fatty Liver
Published in
BMC Complementary Medicine and Therapies / Issue 1/2021
Electronic ISSN: 2662-7671
DOI
https://doi.org/10.1186/s12906-021-03212-6

Other articles of this Issue 1/2021

BMC Complementary Medicine and Therapies 1/2021 Go to the issue