Skip to main content
Top

Open Access 12-04-2024 | Familial Adenomatous Polyposis | Original Article

Evaluation of EGFR and COX pathway inhibition in human colon organoids of serrated polyposis and other hereditary cancer syndromes

Authors: Priyanka Kanth, Mark W. Hazel, John C. Schell, Jared Rutter, Ruoxin Yao, Alyssa P. Mills, Don A. Delker

Published in: Familial Cancer

Login to get access

Abstract

Serrated polyposis syndrome (SPS) presents with multiple sessile serrated lesions (SSL) in the large intestine and confers increased colorectal cancer (CRC) risk. However, the etiology of SPS is not known. SSL-derived organoids have not been previously studied but may help provide insights into SPS pathogenesis and identify novel biomarkers and chemopreventive strategies. This study examined effects of EGFR and COX pathway inhibition in organoid cultures derived from uninvolved colon and polyps of SPS patients. We also compared with organoids representing the hereditary gastrointestinal syndromes, Familial Adenomatous Polyposis (FAP) and Lynch syndrome (LS). Eighteen total organoid colon cultures were generated from uninvolved colon and polyps in SPS, FAP, LS, and non-syndromic screening colonoscopy patients. BRAF and KRAS mutation status was determined for each culture. Erlotinib (EGFR inhibitor) and sulindac (COX inhibitor) were applied individually and in combination. A 44-target gene custom mRNA panel (including WNT and COX pathway genes) and a 798-gene microRNA gene panel were used to quantitate organoid RNA expression by NanoString analysis. Erlotinib treatment significantly decreased levels of mRNAs associated with WNT and MAPK kinase signaling in organoids from uninvolved colon from all four patient categories and from all SSL and adenomatous polyps. Sulindac did not change the mRNA profile in any culture. Our findings suggest that EGFR inhibitors may contribute to the chemopreventive treatment of SSLs. These findings may also facilitate clinical trial design using these agents in SPS patients. Differentially expressed genes identified in our study (MYC, FOSL1, EGR1, IL33, LGR5 and FOXQ1) may be used to identify other new molecular targets for chemoprevention of SSLs.
Appendix
Available only for authorised users
Literature
1.
go back to reference National Center for Health Statistics. Health, United States, 2010: With Special Feature on Death and Dying. (U.S. Government) (2011) National Center for Health Statistics. Health, United States, 2010: With Special Feature on Death and Dying. (U.S. Government) (2011)
2.
go back to reference Kanth P, Grimmett J, Champine M, Burt R, Samadder NJ (2017) Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol 112(10):1509–1525PubMedCrossRef Kanth P, Grimmett J, Champine M, Burt R, Samadder NJ (2017) Hereditary colorectal polyposis and cancer syndromes: a primer on diagnosis and management. Am J Gastroenterol 112(10):1509–1525PubMedCrossRef
3.
go back to reference Rho JH, Ladd JJ, Li CI et al (2018) Protein and glycomic plasma markers for early detection of adenoma and colon cancer. Gut 67(3):473–484PubMedCrossRef Rho JH, Ladd JJ, Li CI et al (2018) Protein and glycomic plasma markers for early detection of adenoma and colon cancer. Gut 67(3):473–484PubMedCrossRef
4.
go back to reference Ivancic MM, Irving AA, Jonakin KG, Dove WF, Sussman MR (2014) The concentrations of EGFR, LRG1, ITIH4, and F5 in serum correlate with the number of colonic adenomas in ApcPirc/+ rats. Cancer Prev Res (Phila) 7(11):1160–1169PubMedCrossRef Ivancic MM, Irving AA, Jonakin KG, Dove WF, Sussman MR (2014) The concentrations of EGFR, LRG1, ITIH4, and F5 in serum correlate with the number of colonic adenomas in ApcPirc/+ rats. Cancer Prev Res (Phila) 7(11):1160–1169PubMedCrossRef
5.
go back to reference Schmelz EM, Xu H, Sengupta R et al (2007) Regression of early and intermediate stages of colon cancer by targeting multiple members of the EGFR family with EGFR-related protein. Cancer Res 67(11):5389–5396PubMedCrossRef Schmelz EM, Xu H, Sengupta R et al (2007) Regression of early and intermediate stages of colon cancer by targeting multiple members of the EGFR family with EGFR-related protein. Cancer Res 67(11):5389–5396PubMedCrossRef
6.
go back to reference Fichera A, Little N, Jagadeeswaran S et al (2007) Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis. Cancer Res 67(2):827–835PubMedPubMedCentralCrossRef Fichera A, Little N, Jagadeeswaran S et al (2007) Epidermal growth factor receptor signaling is required for microadenoma formation in the mouse azoxymethane model of colonic carcinogenesis. Cancer Res 67(2):827–835PubMedPubMedCentralCrossRef
7.
go back to reference Roberts RB, Min L, Washington MK et al (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99(3):1521–1526PubMedPubMedCentralCrossRef Roberts RB, Min L, Washington MK et al (2002) Importance of epidermal growth factor receptor signaling in establishment of adenomas and maintenance of carcinomas during intestinal tumorigenesis. Proc Natl Acad Sci USA 99(3):1521–1526PubMedPubMedCentralCrossRef
8.
go back to reference Torrance CJ, Jackson PE, Montgomery E et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6(9):1024–1028PubMedCrossRef Torrance CJ, Jackson PE, Montgomery E et al (2000) Combinatorial chemoprevention of intestinal neoplasia. Nat Med 6(9):1024–1028PubMedCrossRef
9.
go back to reference Gillen DL, Meyskens FL, Morgan TR et al (2015) A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum. Cancer Prev Res (Phila) 8(3):222–230PubMedCrossRef Gillen DL, Meyskens FL, Morgan TR et al (2015) A phase IIa randomized, double-blind trial of erlotinib in inhibiting epidermal growth factor receptor signaling in aberrant crypt foci of the colorectum. Cancer Prev Res (Phila) 8(3):222–230PubMedCrossRef
10.
go back to reference Giardiello FM, Yang VW, Hylind LM et al (2002) Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 346(14):1054–1059PubMedPubMedCentralCrossRef Giardiello FM, Yang VW, Hylind LM et al (2002) Primary chemoprevention of familial adenomatous polyposis with sulindac. N Engl J Med 346(14):1054–1059PubMedPubMedCentralCrossRef
11.
go back to reference Asano TK, McLeod RS (2004) Non steroidal anti-inflammatory drugs (NSAID) and Aspirin for preventing colorectal adenomas and carcinomas. Cochrane Database Syst Rev (2):Cd004079 Asano TK, McLeod RS (2004) Non steroidal anti-inflammatory drugs (NSAID) and Aspirin for preventing colorectal adenomas and carcinomas. Cochrane Database Syst Rev (2):Cd004079
12.
go back to reference Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM (2002) Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 122(3):641–645PubMedCrossRef Cruz-Correa M, Hylind LM, Romans KE, Booker SV, Giardiello FM (2002) Long-term treatment with sulindac in familial adenomatous polyposis: a prospective cohort study. Gastroenterology 122(3):641–645PubMedCrossRef
13.
go back to reference Samadder NJ, Neklason DW, Boucher KM et al (2016) Effect of sulindac and erlotinib vs placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 315(12):1266–1275PubMedPubMedCentralCrossRef Samadder NJ, Neklason DW, Boucher KM et al (2016) Effect of sulindac and erlotinib vs placebo on duodenal neoplasia in familial adenomatous polyposis: a randomized clinical trial. JAMA 315(12):1266–1275PubMedPubMedCentralCrossRef
14.
go back to reference Samadder NJ, Kuwada SK, Boucher KM et al (2018) Association of sulindac and erlotinib vs placebo with colorectal neoplasia in familial adenomatous polyposis: secondary analysis of a randomized clinical trial. JAMA Oncol 4(5):671–677PubMedPubMedCentralCrossRef Samadder NJ, Kuwada SK, Boucher KM et al (2018) Association of sulindac and erlotinib vs placebo with colorectal neoplasia in familial adenomatous polyposis: secondary analysis of a randomized clinical trial. JAMA Oncol 4(5):671–677PubMedPubMedCentralCrossRef
15.
go back to reference Burn J, Gerdes AM, Macrae F et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087PubMedPubMedCentralCrossRef Burn J, Gerdes AM, Macrae F et al (2011) Long-term effect of aspirin on cancer risk in carriers of hereditary colorectal cancer: an analysis from the CAPP2 randomised controlled trial. Lancet 378(9809):2081–2087PubMedPubMedCentralCrossRef
16.
go back to reference Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377(9759):31–41PubMedCrossRef Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377(9759):31–41PubMedCrossRef
17.
go back to reference Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265PubMedCrossRef Sato T, Vries RG, Snippert HJ et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265PubMedCrossRef
18.
go back to reference Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772PubMedCrossRef Sato T, Stange DE, Ferrante M et al (2011) Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology 141(5):1762–1772PubMedCrossRef
19.
go back to reference Fujii M, Shimokawa M, Date S et al (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838PubMedCrossRef Fujii M, Shimokawa M, Date S et al (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18(6):827–838PubMedCrossRef
20.
go back to reference Bongers G, Muniz LR, Pacer ME et al (2012) A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans. Gastroenterology 143(3):730–740PubMedCrossRef Bongers G, Muniz LR, Pacer ME et al (2012) A role for the epidermal growth factor receptor signaling in development of intestinal serrated polyps in mice and humans. Gastroenterology 143(3):730–740PubMedCrossRef
21.
go back to reference Sakamoto N, Feng Y, Stolfi C et al (2017) BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. eLife 6 Sakamoto N, Feng Y, Stolfi C et al (2017) BRAF(V600E) cooperates with CDX2 inactivation to promote serrated colorectal tumorigenesis. eLife 6
22.
go back to reference Delker DA, Wood AC, Snow AK et al (2018) Chemoprevention with cyclooxygenase and epidermal growth factor receptor inhibitors in familial adenomatous polyposis patients: MRNA signatures of duodenal neoplasia. Cancer Prev Res (Phila) 11(1):4–15PubMedCrossRef Delker DA, Wood AC, Snow AK et al (2018) Chemoprevention with cyclooxygenase and epidermal growth factor receptor inhibitors in familial adenomatous polyposis patients: MRNA signatures of duodenal neoplasia. Cancer Prev Res (Phila) 11(1):4–15PubMedCrossRef
23.
go back to reference Kanth P, Bronner MP, Boucher KM et al (2016) Gene signature in sessile serrated polyps identifies colon cancer subtype. Cancer Prev Res (Phila) 9(6):456–465PubMedCrossRef Kanth P, Bronner MP, Boucher KM et al (2016) Gene signature in sessile serrated polyps identifies colon cancer subtype. Cancer Prev Res (Phila) 9(6):456–465PubMedCrossRef
24.
go back to reference Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10(10):1474–1485PubMedCrossRef Fujii M, Matano M, Nanki K, Sato T (2015) Efficient genetic engineering of human intestinal organoids using electroporation. Nat Protoc 10(10):1474–1485PubMedCrossRef
25.
go back to reference Schell JC, Wisidagama DR, Bensard C et al (2017) Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 19(9):1027–1036PubMedPubMedCentralCrossRef Schell JC, Wisidagama DR, Bensard C et al (2017) Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism. Nat Cell Biol 19(9):1027–1036PubMedPubMedCentralCrossRef
26.
go back to reference Williams CS, Goldman AP, Sheng H, Morrow JD, DuBois RN (1999) Sulindac sulfide, but not sulindac sulfone, inhibits colorectal cancer growth. Neoplasia 1(2):170–176PubMedPubMedCentralCrossRef Williams CS, Goldman AP, Sheng H, Morrow JD, DuBois RN (1999) Sulindac sulfide, but not sulindac sulfone, inhibits colorectal cancer growth. Neoplasia 1(2):170–176PubMedPubMedCentralCrossRef
27.
go back to reference Herrmann C, Block C, Geisen C et al (1998) Sulindac sulfide inhibits Ras signaling. Oncogene 17(14):1769–1776PubMedCrossRef Herrmann C, Block C, Geisen C et al (1998) Sulindac sulfide inhibits Ras signaling. Oncogene 17(14):1769–1776PubMedCrossRef
28.
go back to reference Weickhardt AJ, Price TJ, Chong G et al (2012) Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol 30(13):1505–1512PubMedCrossRef Weickhardt AJ, Price TJ, Chong G et al (2012) Dual targeting of the epidermal growth factor receptor using the combination of cetuximab and erlotinib: preclinical evaluation and results of the phase II DUX study in chemotherapy-refractory, advanced colorectal cancer. J Clin Oncol 30(13):1505–1512PubMedCrossRef
29.
31.
go back to reference Lannagan TRM, Lee YK, Wang T et al (2019) Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 68(4):684–692PubMedCrossRef Lannagan TRM, Lee YK, Wang T et al (2019) Genetic editing of colonic organoids provides a molecularly distinct and orthotopic preclinical model of serrated carcinogenesis. Gut 68(4):684–692PubMedCrossRef
32.
go back to reference Fessler E, Drost J, van Hooff SR et al (2016) TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med 8(7):745–760PubMedPubMedCentralCrossRef Fessler E, Drost J, van Hooff SR et al (2016) TGFbeta signaling directs serrated adenomas to the mesenchymal colorectal cancer subtype. EMBO Mol Med 8(7):745–760PubMedPubMedCentralCrossRef
33.
go back to reference Delker DA, McGettigan BM, Kanth P et al (2014) RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS ONE 9(2):e88367PubMedPubMedCentralCrossRef Delker DA, McGettigan BM, Kanth P et al (2014) RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS ONE 9(2):e88367PubMedPubMedCentralCrossRef
34.
go back to reference Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016PubMedCrossRef Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016PubMedCrossRef
36.
37.
go back to reference Vaish V, Piplani H, Rana C, Vaiphei K, Sanyal SN (2013) NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 378(1–2):47–64PubMedCrossRef Vaish V, Piplani H, Rana C, Vaiphei K, Sanyal SN (2013) NSAIDs may regulate EGR-1-mediated induction of reactive oxygen species and non-steroidal anti-inflammatory drug-induced gene (NAG)-1 to initiate intrinsic pathway of apoptosis for the chemoprevention of colorectal cancer. Mol Cell Biochem 378(1–2):47–64PubMedCrossRef
38.
go back to reference Moon Y, Yang H, Kim YB (2007) Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicol Appl Pharmacol 223(2):155–163PubMedCrossRef Moon Y, Yang H, Kim YB (2007) Up-regulation of early growth response gene 1 (EGR-1) via ERK1/2 signals attenuates sulindac sulfide-mediated cytotoxicity in the human intestinal epithelial cells. Toxicol Appl Pharmacol 223(2):155–163PubMedCrossRef
39.
go back to reference Mann B, Gelos M, Siedow A et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96(4):1603–1608PubMedPubMedCentralCrossRef Mann B, Gelos M, Siedow A et al (1999) Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA 96(4):1603–1608PubMedPubMedCentralCrossRef
40.
go back to reference Day FL, Jorissen RN, Lipton L et al (2013) PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res 19(12):3285–3296PubMedCrossRef Day FL, Jorissen RN, Lipton L et al (2013) PIK3CA and PTEN gene and exon mutation-specific clinicopathologic and molecular associations in colorectal cancer. Clin Cancer Res 19(12):3285–3296PubMedCrossRef
41.
go back to reference Eissmann MF, Dijkstra C, Wouters MA et al (2018) Interleukin 33 signaling restrains sporadic colon cancer in an interferon-gamma-dependent manner. Cancer Immunol Res 6(4):409–421PubMedCrossRef Eissmann MF, Dijkstra C, Wouters MA et al (2018) Interleukin 33 signaling restrains sporadic colon cancer in an interferon-gamma-dependent manner. Cancer Immunol Res 6(4):409–421PubMedCrossRef
42.
go back to reference Ameri AH, Moradi Tuchayi S, Zaalberg A et al (2019) IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc Natl Acad Sci USA 116(7):2646–2651PubMedPubMedCentralCrossRef Ameri AH, Moradi Tuchayi S, Zaalberg A et al (2019) IL-33/regulatory T cell axis triggers the development of a tumor-promoting immune environment in chronic inflammation. Proc Natl Acad Sci USA 116(7):2646–2651PubMedPubMedCentralCrossRef
43.
go back to reference Kaneda H, Arao T, Tanaka K et al (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70(5):2053–2063PubMedCrossRef Kaneda H, Arao T, Tanaka K et al (2010) FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res 70(5):2053–2063PubMedCrossRef
44.
go back to reference Christensen J, Bentz S, Sengstag T, Shastri VP, Anderle P (2013) FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors. PLoS ONE 8(3):e60051PubMedPubMedCentralCrossRef Christensen J, Bentz S, Sengstag T, Shastri VP, Anderle P (2013) FOXQ1, a novel target of the Wnt pathway and a new marker for activation of Wnt signaling in solid tumors. PLoS ONE 8(3):e60051PubMedPubMedCentralCrossRef
45.
go back to reference Liu JY, Wu XY, Wu GN, Liu FK, Yao XQ (2017) FOXQ1 promotes cancer metastasis by PI3K/AKT signaling regulation in colorectal carcinoma. Am J Transl Res 9(5):2207–2218PubMedPubMedCentral Liu JY, Wu XY, Wu GN, Liu FK, Yao XQ (2017) FOXQ1 promotes cancer metastasis by PI3K/AKT signaling regulation in colorectal carcinoma. Am J Transl Res 9(5):2207–2218PubMedPubMedCentral
46.
go back to reference Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 545(7653):187–192PubMedCrossRef Shimokawa M, Ohta Y, Nishikori S et al (2017) Visualization and targeting of LGR5(+) human colon cancer stem cells. Nature 545(7653):187–192PubMedCrossRef
47.
go back to reference Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH (2018) Expression profile of LGR5 and its prognostic significance in colorectal cancer progression. Am J Pathol 188(10):2236–2250PubMedCrossRef Jang BG, Kim HS, Chang WY, Bae JM, Kim WH, Kang GH (2018) Expression profile of LGR5 and its prognostic significance in colorectal cancer progression. Am J Pathol 188(10):2236–2250PubMedCrossRef
48.
go back to reference Fumagalli A, Oost KC, Kester L et al (2020) Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26(4):569–578.e7 Fumagalli A, Oost KC, Kester L et al (2020) Plasticity of Lgr5-negative cancer cells drives metastasis in colorectal cancer. Cell Stem Cell 26(4):569–578.e7
49.
go back to reference Esposito DL, Aru F, Lattanzio R et al (2012) The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS ONE 7(4):e36190PubMedPubMedCentralCrossRef Esposito DL, Aru F, Lattanzio R et al (2012) The insulin receptor substrate 1 (IRS1) in intestinal epithelial differentiation and in colorectal cancer. PLoS ONE 7(4):e36190PubMedPubMedCentralCrossRef
50.
go back to reference Bailey KL, Agarwal E, Chowdhury S et al (2017) TGFbeta/Smad3 regulates proliferation and apoptosis through IRS-1 inhibition in colon cancer cells. PLoS ONE 12(4):e0176096PubMedPubMedCentralCrossRef Bailey KL, Agarwal E, Chowdhury S et al (2017) TGFbeta/Smad3 regulates proliferation and apoptosis through IRS-1 inhibition in colon cancer cells. PLoS ONE 12(4):e0176096PubMedPubMedCentralCrossRef
51.
go back to reference Bian Z, Zhang J, Li M et al (2018) LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res 24(19):4808–4819PubMedCrossRef Bian Z, Zhang J, Li M et al (2018) LncRNA-FEZF1-AS1 promotes tumor proliferation and metastasis in colorectal cancer by regulating PKM2 signaling. Clin Cancer Res 24(19):4808–4819PubMedCrossRef
52.
go back to reference Graham LD, Pedersen SK, Brown GS et al (2011) Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2(8):829–840PubMedPubMedCentralCrossRef Graham LD, Pedersen SK, Brown GS et al (2011) Colorectal neoplasia differentially expressed (CRNDE), a novel gene with elevated expression in colorectal adenomas and adenocarcinomas. Genes Cancer 2(8):829–840PubMedPubMedCentralCrossRef
53.
go back to reference Wang G, Pan J, Zhang L, Wei Y, Wang C (2017) Long non-coding RNA CRNDE sponges miR-384 to promote proliferation and metastasis of pancreatic cancer cells through upregulating IRS1. Cell Prolif. 50(6):e12389PubMedPubMedCentralCrossRef Wang G, Pan J, Zhang L, Wei Y, Wang C (2017) Long non-coding RNA CRNDE sponges miR-384 to promote proliferation and metastasis of pancreatic cancer cells through upregulating IRS1. Cell Prolif. 50(6):e12389PubMedPubMedCentralCrossRef
54.
go back to reference Nie J, Liu L, Zheng W et al (2012) microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 33(1):220–225PubMedCrossRef Nie J, Liu L, Zheng W et al (2012) microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 33(1):220–225PubMedCrossRef
55.
go back to reference Hwang WL, Jiang JK, Yang SH et al (2014) MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 16(3):268–280PubMedCrossRef Hwang WL, Jiang JK, Yang SH et al (2014) MicroRNA-146a directs the symmetric division of Snail-dominant colorectal cancer stem cells. Nat Cell Biol 16(3):268–280PubMedCrossRef
Metadata
Title
Evaluation of EGFR and COX pathway inhibition in human colon organoids of serrated polyposis and other hereditary cancer syndromes
Authors
Priyanka Kanth
Mark W. Hazel
John C. Schell
Jared Rutter
Ruoxin Yao
Alyssa P. Mills
Don A. Delker
Publication date
12-04-2024
Publisher
Springer Netherlands
Published in
Familial Cancer
Print ISSN: 1389-9600
Electronic ISSN: 1573-7292
DOI
https://doi.org/10.1007/s10689-024-00370-7
Webinar | 19-02-2024 | 17:30 (CET)

Keynote webinar | Spotlight on antibody–drug conjugates in cancer

Antibody–drug conjugates (ADCs) are novel agents that have shown promise across multiple tumor types. Explore the current landscape of ADCs in breast and lung cancer with our experts, and gain insights into the mechanism of action, key clinical trials data, existing challenges, and future directions.

Dr. Véronique Diéras
Prof. Fabrice Barlesi
Developed by: Springer Medicine