Skip to main content
Top
Published in: Journal of Neurology 11/2010

01-11-2010 | Original Communication

Eye-movement training-induced changes of visual field representation in patients with post-stroke hemianopia

Authors: Gereon Nelles, Anja Pscherer, Armin de Greiff, Horst Gerhard, Michael Forsting, Joachim Esser, H. Christoph Diener

Published in: Journal of Neurology | Issue 11/2010

Login to get access

Abstract

Changes in neuronal activity have been described in patients with hemianopia following ischemic lesions of the visual cortex. This reorganization may facilitate compensation of lost visual function that is rarely fully restituted. Improving exploratory eye movements with appropriate training has been shown to partially compensate for the visuoperceptive impairment during daily life activities. The changes in cortical processing of visual stimuli that may be induced by these training strategies, however, are less well described. We used fMRI to study the training effects of eye-movement training on cortical representation of visual hemifields. Brain activation during hemifield stimulation was measured in eight patients with an occipital cortical lesion of the striate cortex causing homonymous hemianopia. Starting 8 weeks after the stroke, patients received 4 weeks of eye movement training. fMRI measurements were performed at baseline and after training. In five patients, follow-up fMRI was performed 4 weeks after the end of training. Differences in activation between rest and hemifield stimulation as well as before and after training were assessed with statistical parametric mapping. Twelve healthy subjects were scanned twice at a 4-week interval. During stimulation of the affected hemifield, significant activation at baseline was found bilaterally in extrastriate cortical areas, with the strongest increases in the contralesional hemisphere. This activation pattern was maintained after training. Four weeks after the end of training, there was an additional activation of the extrastriate cortex in the contralesional hemisphere compared to baseline. No changes in the size of visual field defects were found. In this group of patients, eye-movement training induced altered brain activation in the unaffected extrastriate cortex.
Literature
1.
go back to reference Romano JG (2009) Progress in rehabilitation of hemianopic visual field defects. Cerebrovasc Dis 27(suppl 1):187–190CrossRefPubMed Romano JG (2009) Progress in rehabilitation of hemianopic visual field defects. Cerebrovasc Dis 27(suppl 1):187–190CrossRefPubMed
2.
go back to reference Kasten E, Wust S, Behrens-Baumann W, Sabel BA (1998) Computer-based training for the treatment of partial blindness. Nat Med 4:1083–1087CrossRefPubMed Kasten E, Wust S, Behrens-Baumann W, Sabel BA (1998) Computer-based training for the treatment of partial blindness. Nat Med 4:1083–1087CrossRefPubMed
3.
go back to reference Kasten E, Bunzenthal U, Sabel BA (2006) Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Behav Brain Res 175:18–26CrossRefPubMed Kasten E, Bunzenthal U, Sabel BA (2006) Visual field recovery after vision restoration therapy (VRT) is independent of eye movements: an eye tracker study. Behav Brain Res 175:18–26CrossRefPubMed
4.
go back to reference Balliet R, Blood KM, Bach-Y-Rita P (1985) Visual field rehabilitation in the cortically blind? J Neurol Neurosurg Psychiatry 48(11):1113–1124CrossRefPubMed Balliet R, Blood KM, Bach-Y-Rita P (1985) Visual field rehabilitation in the cortically blind? J Neurol Neurosurg Psychiatry 48(11):1113–1124CrossRefPubMed
5.
go back to reference Reinhard J, Schreiber A, Schiefer U, Kasten E, Sabel BA, Kenkel S, Vonthein R, Trauzettel-Klosinski S (2005) Does visual restitution training change absolute homonymous visual field defect? Br J Ophthalmol 89(1):30–35CrossRefPubMed Reinhard J, Schreiber A, Schiefer U, Kasten E, Sabel BA, Kenkel S, Vonthein R, Trauzettel-Klosinski S (2005) Does visual restitution training change absolute homonymous visual field defect? Br J Ophthalmol 89(1):30–35CrossRefPubMed
6.
go back to reference Kerkhoff G, Munssinger U, Meier EK (1994) Neurovisual rehabilitation in cerebral blindness. Arch Neurol 51:474–481PubMed Kerkhoff G, Munssinger U, Meier EK (1994) Neurovisual rehabilitation in cerebral blindness. Arch Neurol 51:474–481PubMed
7.
go back to reference Nelles G, Esser J, Eckstein A, Tiede A, Gerhard H, Diener H (2001) Compensatory visual field training in recovery from hemianopia after stroke. Neurosci Lett 306:192–198CrossRef Nelles G, Esser J, Eckstein A, Tiede A, Gerhard H, Diener H (2001) Compensatory visual field training in recovery from hemianopia after stroke. Neurosci Lett 306:192–198CrossRef
8.
go back to reference Pambakian AL, Mannan SK, Hodgson TL, Kennard C (2004) Saccadic visual search training: a treatment for patients with homonymous hemianopia. J Neurol Neurosurg Psychiatry 75:1443–1448CrossRefPubMed Pambakian AL, Mannan SK, Hodgson TL, Kennard C (2004) Saccadic visual search training: a treatment for patients with homonymous hemianopia. J Neurol Neurosurg Psychiatry 75:1443–1448CrossRefPubMed
9.
go back to reference Roth T, Sokolov AN, Messias A, Roth P, Weller M, Trauzettel-Klosinski S (2009) Comparing explorative saccade and flicker training in hemianopia. Neurology 72(4):324–331CrossRefPubMed Roth T, Sokolov AN, Messias A, Roth P, Weller M, Trauzettel-Klosinski S (2009) Comparing explorative saccade and flicker training in hemianopia. Neurology 72(4):324–331CrossRefPubMed
10.
go back to reference Schuett S, Kentridge RW, Zihl J, Heywood CA (2009) Adaptation of eye-movements to simulated hemianopia in reading and visual exploration: transfer or specificity? Neuropsychologia 47:1712–1720CrossRefPubMed Schuett S, Kentridge RW, Zihl J, Heywood CA (2009) Adaptation of eye-movements to simulated hemianopia in reading and visual exploration: transfer or specificity? Neuropsychologia 47:1712–1720CrossRefPubMed
11.
go back to reference Bolognini N, Rasi F, Coccia M, Ladavas E (2005) Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128:2830–2842CrossRefPubMed Bolognini N, Rasi F, Coccia M, Ladavas E (2005) Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128:2830–2842CrossRefPubMed
12.
go back to reference Kinsbourne M (1974) Lateral interactions in the brain. In: Kinsbourne M, Smith WL (eds) Hemispheric disconnection and cerebral function. C.C. Thomas, Springfield Kinsbourne M (1974) Lateral interactions in the brain. In: Kinsbourne M, Smith WL (eds) Hemispheric disconnection and cerebral function. C.C. Thomas, Springfield
13.
go back to reference Albert ML (1973) A simple test of visual neglect. Neurology 23:658–664PubMed Albert ML (1973) A simple test of visual neglect. Neurology 23:658–664PubMed
14.
go back to reference Heilmann KM, Watson RT, Valenstein E (1992) Neglect and related disorder. In: Heilmann KM, Valenstein E (eds) Clinical neuropsychology. Oxford University Press, Oxford Heilmann KM, Watson RT, Valenstein E (1992) Neglect and related disorder. In: Heilmann KM, Valenstein E (eds) Clinical neuropsychology. Oxford University Press, Oxford
15.
go back to reference Frackowiak R, Friston K, Frith C, Dolan R, Mazziotta J (1997) Human brain function. Academic Press, San Diego Frackowiak R, Friston K, Frith C, Dolan R, Mazziotta J (1997) Human brain function. Academic Press, San Diego
16.
go back to reference Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10:385–396CrossRefPubMed Friston KJ, Holmes AP, Price CJ, Buchel C, Worsley KJ (1999) Multisubject fMRI studies and conjunction analyses. Neuroimage 10:385–396CrossRefPubMed
17.
go back to reference Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme Verlag, New York Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain. Thieme Verlag, New York
18.
go back to reference Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824CrossRefPubMed
19.
go back to reference Nelles G, Widman G, de Greiff A, Meistrowitz A, Dimitrova A, Weber J, Forsting M, Esser J, Diener HC (2002) Brain representation of hemifield stimulation in poststroke visual field defects. Stroke 33:1286–1293CrossRefPubMed Nelles G, Widman G, de Greiff A, Meistrowitz A, Dimitrova A, Weber J, Forsting M, Esser J, Diener HC (2002) Brain representation of hemifield stimulation in poststroke visual field defects. Stroke 33:1286–1293CrossRefPubMed
20.
go back to reference Nelles G, de Greiff A, Pscherer A, Forsting M, Hufnagel A, Esser J, Diener HC (2007) Cortical representation of visual field defects after stroke. Neurosci Lett 426:34–38CrossRefPubMed Nelles G, de Greiff A, Pscherer A, Forsting M, Hufnagel A, Esser J, Diener HC (2007) Cortical representation of visual field defects after stroke. Neurosci Lett 426:34–38CrossRefPubMed
21.
go back to reference Tardif E, Clarke S (2002) Commissural connections of human superior colliculus. Neuroscience 111:363–372CrossRefPubMed Tardif E, Clarke S (2002) Commissural connections of human superior colliculus. Neuroscience 111:363–372CrossRefPubMed
22.
go back to reference Ffytche DH, Skidmore BD, Zeki S (1995) Motion-from-hue activates area V5 of human visual cortex. Proc R Soc Lond B Biol Sci 260(1359):353–358CrossRef Ffytche DH, Skidmore BD, Zeki S (1995) Motion-from-hue activates area V5 of human visual cortex. Proc R Soc Lond B Biol Sci 260(1359):353–358CrossRef
23.
go back to reference Billino J, Braun DI, Böhm KD, Bremmer F, Gegenfurtner KR (2009) Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia 47(10):2133–2144CrossRefPubMed Billino J, Braun DI, Böhm KD, Bremmer F, Gegenfurtner KR (2009) Cortical networks for motion processing: effects of focal brain lesions on perception of different motion types. Neuropsychologia 47(10):2133–2144CrossRefPubMed
24.
go back to reference Trauzettel-Klosinski S, Reinhard J (1998) The vertical field border in hemianopia and its significance for fixation and reading. Invest Ophthalmol Vis Sci 39:2177–2186PubMed Trauzettel-Klosinski S, Reinhard J (1998) The vertical field border in hemianopia and its significance for fixation and reading. Invest Ophthalmol Vis Sci 39:2177–2186PubMed
25.
go back to reference Henriksson L, Raninen A, Näsänen R, Hyvärinen L, Vanni S (2007) Training-induced cortical representation of a hemianopic hemifield. J Neurol Neurosurg Psychiatry 78:74–81CrossRefPubMed Henriksson L, Raninen A, Näsänen R, Hyvärinen L, Vanni S (2007) Training-induced cortical representation of a hemianopic hemifield. J Neurol Neurosurg Psychiatry 78:74–81CrossRefPubMed
26.
go back to reference Marshall RS, Ferrera JJ, Barnes A, Zhang Xian, O’Brien KA, Chmayssani M, Hirsch J, Lazar RM (2008) Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patients. Neurorehabil Neural Repair 22:136–144PubMed Marshall RS, Ferrera JJ, Barnes A, Zhang Xian, O’Brien KA, Chmayssani M, Hirsch J, Lazar RM (2008) Brain activity associated with stimulation therapy of the visual borderzone in hemianopic stroke patients. Neurorehabil Neural Repair 22:136–144PubMed
Metadata
Title
Eye-movement training-induced changes of visual field representation in patients with post-stroke hemianopia
Authors
Gereon Nelles
Anja Pscherer
Armin de Greiff
Horst Gerhard
Michael Forsting
Joachim Esser
H. Christoph Diener
Publication date
01-11-2010
Publisher
Springer-Verlag
Published in
Journal of Neurology / Issue 11/2010
Print ISSN: 0340-5354
Electronic ISSN: 1432-1459
DOI
https://doi.org/10.1007/s00415-010-5617-1

Other articles of this Issue 11/2010

Journal of Neurology 11/2010 Go to the issue