Skip to main content
Top
Published in: Chinese Medicine 1/2018

Open Access 01-12-2018 | Research

Extrahepatic cytochrome P450s play an insignificant role in triptolide-induced toxicity

Authors: Yuan Wei, Dujun Wang, Meng Chen, Zhen Ouyang, Shuo Wang, Jun Gu

Published in: Chinese Medicine | Issue 1/2018

Login to get access

Abstract

Background

Triptolide, an active ingredient of Chinese medicine plant Tripterygium wilfordii Hook.f., has been shown to exert anti-tumor, immunosuppressive, anti-inflammatory, and anti-fertility pharmacological effects. However, triptolide also causes severe side effects, which are manifested as toxicities in multiple organs. The aim of this study was to analyze the role of extrahepatic cytochrome P450 enzymes in triptolide-induced toxicity.

Methods

Xh-CL mouse model with normal liver, but low extrahepatic P450 expression levels was used in this study. Xh-CL mice and C57BL/6 (wildtype, WT) mice were treated with 200 μg/kg triptolide intraperitoneally every other day for 30 days. The serum levels of alanine aminotransferase (ALT), aspartate transaminase (AST), creatine (Cre), and blood urea nitrogen (BUN) were detected by kits. The changes of tissue were observed with H&E staining. Two groups of mice (Xh-CL and WT animals), were received a single dose of 1 mg/kg TP by oral gavage for pharmacokinetic analysis.

Results

Xh-CL mice displayed higher serum levels of ALT, AST, Cre, and BUN compared to untreated Xh-CL mice. The organ-to-body weight ratio for spleen was high, while that for testes was low. Histopathological changes were observed in multiple organs. However, compared with triptolide-treated WT mice, no significant differences in either blood chemistry or histopathology were recorded. Furthermore, pharmacokinetic studies showed no significant differences between triptolide-treated Xh-CL and WT mice.

Conclusions

Our findings suggest that sub-chronic triptolide treatment can induce toxicities in mouse kidney, spleen, and testis with or without normal local P450 functions. Therefore, extrahepatic P450s play an insignificant role in triptolide-induced toxicity.
Appendix
Available only for authorised users
Literature
1.
go back to reference Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155:67–79.CrossRefPubMed Li XJ, Jiang ZZ, Zhang LY. Triptolide: progress on research in pharmacodynamics and toxicology. J Ethnopharmacol. 2014;155:67–79.CrossRefPubMed
2.
go back to reference Cheng X, Jing Z, He YH, Jia HW, Zhao LH, Ning Z, Lu AP. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-κB: a study on induced arthritis in rats. Chin Med. 2009;4(1):1–7.CrossRef Cheng X, Jing Z, He YH, Jia HW, Zhao LH, Ning Z, Lu AP. Effects of triptolide from Radix Tripterygium wilfordii (Leigongteng) on cartilage cytokines and transcription factor NF-κB: a study on induced arthritis in rats. Chin Med. 2009;4(1):1–7.CrossRef
3.
go back to reference Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, Crews CM. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci. 2007;104:4389–94.CrossRefPubMedPubMedCentral Leuenroth SJ, Okuhara D, Shotwell JD, Markowitz GS, Yu Z, Somlo S, Crews CM. Triptolide is a traditional Chinese medicine-derived inhibitor of polycystic kidney disease. Proc Natl Acad Sci. 2007;104:4389–94.CrossRefPubMedPubMedCentral
4.
go back to reference Ming J. Pharmacological and clinical study on polyglycoside of Tripterygium wilfordii hook f. Chin Med J. 1996;57:35. Ming J. Pharmacological and clinical study on polyglycoside of Tripterygium wilfordii hook f. Chin Med J. 1996;57:35.
5.
go back to reference Li W, Liu Y, He YQ, Zhang JW, Gao Y, Ge GB, Liu HX, Huo H, Liu HT, Wang LM. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes. Xenobiotica. 2008;38:1551–65.CrossRefPubMed Li W, Liu Y, He YQ, Zhang JW, Gao Y, Ge GB, Liu HX, Huo H, Liu HT, Wang LM. Characterization of triptolide hydroxylation by cytochrome P450 in human and rat liver microsomes. Xenobiotica. 2008;38:1551–65.CrossRefPubMed
6.
go back to reference Liu L, Jiang Z, Liu J, Huang X, Wang T, Liu J, Zhang Y, Zhou Z, Guo J, Yang L. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. Toxicology. 2010;271:57–63.CrossRefPubMed Liu L, Jiang Z, Liu J, Huang X, Wang T, Liu J, Zhang Y, Zhou Z, Guo J, Yang L. Sex differences in subacute toxicity and hepatic microsomal metabolism of triptolide in rats. Toxicology. 2010;271:57–63.CrossRefPubMed
7.
go back to reference Ye X, Li W, Yan Y, Mao C, Cai R, Xu H, Yang X. Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rat. Toxicol Lett. 2010;192(2):212–20.CrossRefPubMed Ye X, Li W, Yan Y, Mao C, Cai R, Xu H, Yang X. Effects of cytochrome P4503A inducer dexamethasone on the metabolism and toxicity of triptolide in rat. Toxicol Lett. 2010;192(2):212–20.CrossRefPubMed
8.
go back to reference Zhu B, Liu ZQ, Chen GL, Chen XP, Ou-Yang DS, Wang LS, Huang SL, Tan ZR, Zhou HH. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol. 2003;55:264–9.CrossRefPubMedPubMedCentral Zhu B, Liu ZQ, Chen GL, Chen XP, Ou-Yang DS, Wang LS, Huang SL, Tan ZR, Zhou HH. The distribution and gender difference of CYP3A activity in Chinese subjects. Br J Clin Pharmacol. 2003;55:264–9.CrossRefPubMedPubMedCentral
9.
go back to reference Xue X, Gong L, Qi X, Wu Y, Xing G, Yao J, Luan Y, Xiao Y, Li Y, Wu X. Knockout of hepatic P450 reductase aggravates triptolide-induced toxicity. Toxicol Lett. 2011;205:47–54.CrossRefPubMed Xue X, Gong L, Qi X, Wu Y, Xing G, Yao J, Luan Y, Xiao Y, Li Y, Wu X. Knockout of hepatic P450 reductase aggravates triptolide-induced toxicity. Toxicol Lett. 2011;205:47–54.CrossRefPubMed
10.
go back to reference Wei Y, Zhou X, Fang C, Li L, Kluetzman K, Yang W, Zhang QY, Ding X. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues. J Pharmacol Exp Ther. 2010;334:69–77.CrossRefPubMedPubMedCentral Wei Y, Zhou X, Fang C, Li L, Kluetzman K, Yang W, Zhang QY, Ding X. Generation of a mouse model with a reversible hypomorphic cytochrome P450 reductase gene: utility for tissue-specific rescue of the reductase expression, and insights from a resultant mouse model with global suppression of P450 reductase expression in extrahepatic tissues. J Pharmacol Exp Ther. 2010;334:69–77.CrossRefPubMedPubMedCentral
11.
go back to reference Wu N, Liu XY, Wang DJ, Luo P, Wu Y, Wei Y. Sub-chronic toxicities of triptolide to C57BL/6 mice. Chin Tradit Pat Med. 2014;5:004. Wu N, Liu XY, Wang DJ, Luo P, Wu Y, Wei Y. Sub-chronic toxicities of triptolide to C57BL/6 mice. Chin Tradit Pat Med. 2014;5:004.
12.
go back to reference Gu J, Cui H, Behr M, Zhang L, Zhang QY, Yang W, Hinson JA, Ding X. In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol Pharmacol. 2005;67:623–30.CrossRefPubMed Gu J, Cui H, Behr M, Zhang L, Zhang QY, Yang W, Hinson JA, Ding X. In vivo mechanisms of tissue-selective drug toxicity: effects of liver-specific knockout of the NADPH-cytochrome P450 reductase gene on acetaminophen toxicity in kidney, lung, and nasal mucosa. Mol Pharmacol. 2005;67:623–30.CrossRefPubMed
13.
go back to reference Porter T, Coon M. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem. 1991;266:13469–72.PubMed Porter T, Coon M. Cytochrome P-450. Multiplicity of isoforms, substrates, and catalytic and regulatory mechanisms. J Biol Chem. 1991;266:13469–72.PubMed
14.
go back to reference Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol. 2003;43:149–73.CrossRef Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu Rev Pharmacol. 2003;43:149–73.CrossRef
15.
go back to reference Xu L, Qiu Y, Xu H, Ao W, Lam W, Yang X. Acute and subacute toxicity studies on triptolide and triptolide-loaded polymeric micelles following intravenous administration in rodents. Food Chem Toxicol. 2013;57:371–9.CrossRefPubMed Xu L, Qiu Y, Xu H, Ao W, Lam W, Yang X. Acute and subacute toxicity studies on triptolide and triptolide-loaded polymeric micelles following intravenous administration in rodents. Food Chem Toxicol. 2013;57:371–9.CrossRefPubMed
16.
17.
go back to reference Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos. 2003;31:1520–5.CrossRefPubMed Kaminsky LS, Zhang QY. The small intestine as a xenobiotic-metabolizing organ. Drug Metab Dispos. 2003;31:1520–5.CrossRefPubMed
18.
go back to reference Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61:541–58.CrossRefPubMed Thelen K, Dressman JB. Cytochrome P450-mediated metabolism in the human gut wall. J Pharm Pharmacol. 2009;61:541–58.CrossRefPubMed
19.
go back to reference Berg-Candolfi M, Candolfi E, Benet L. Suppression of intestinal and hepatic cytochrome P4503A in murine Toxoplasma infection. Effects of N-acetylcysteine and N G-monomethyl-l-arginine on the hepatic suppression. Xenobiotica. 1996;26:381–94.CrossRefPubMed Berg-Candolfi M, Candolfi E, Benet L. Suppression of intestinal and hepatic cytochrome P4503A in murine Toxoplasma infection. Effects of N-acetylcysteine and N G-monomethyl-l-arginine on the hepatic suppression. Xenobiotica. 1996;26:381–94.CrossRefPubMed
20.
go back to reference Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica. 2000;30:971–82.CrossRefPubMed Emoto C, Yamazaki H, Yamasaki S, Shimada N, Nakajima M, Yokoi T. Use of everted sacs of mouse small intestine as enzyme sources for the study of drug oxidation activities in vitro. Xenobiotica. 2000;30:971–82.CrossRefPubMed
21.
go back to reference Zhang QY, Dunbar D, Kaminsky LS. Characterization of mouse small intestinal cytochrome P450 expression. Drug Metab Dispos. 2003;31:1346–51.CrossRefPubMed Zhang QY, Dunbar D, Kaminsky LS. Characterization of mouse small intestinal cytochrome P450 expression. Drug Metab Dispos. 2003;31:1346–51.CrossRefPubMed
22.
go back to reference Liu M, Dong J, Yang Y, Yang X, Xu H. Progress in research on triptolide. Chin J Chin Mater Med. 2005;30:170–4. Liu M, Dong J, Yang Y, Yang X, Xu H. Progress in research on triptolide. Chin J Chin Mater Med. 2005;30:170–4.
23.
go back to reference Abdel-Fattah SM, Sanad M, Safaa M, Ragaa F. The protective effect of white ginseng against biochemical and pathological changes induced by aflatoxins in rats. J Am Sci. 2010;6:461–72. Abdel-Fattah SM, Sanad M, Safaa M, Ragaa F. The protective effect of white ginseng against biochemical and pathological changes induced by aflatoxins in rats. J Am Sci. 2010;6:461–72.
24.
go back to reference Shu DF, Song YJ, Li RL. Comparative clinical observation on rheumatoid arthritis treated by triptolide and ethyl acetate extract of Tripterygium wilfordii. Chin J Integr Tradit West Med. 1990;10:144–6. Shu DF, Song YJ, Li RL. Comparative clinical observation on rheumatoid arthritis treated by triptolide and ethyl acetate extract of Tripterygium wilfordii. Chin J Integr Tradit West Med. 1990;10:144–6.
Metadata
Title
Extrahepatic cytochrome P450s play an insignificant role in triptolide-induced toxicity
Authors
Yuan Wei
Dujun Wang
Meng Chen
Zhen Ouyang
Shuo Wang
Jun Gu
Publication date
01-12-2018
Publisher
BioMed Central
Published in
Chinese Medicine / Issue 1/2018
Electronic ISSN: 1749-8546
DOI
https://doi.org/10.1186/s13020-018-0179-8

Other articles of this Issue 1/2018

Chinese Medicine 1/2018 Go to the issue